Source: http://www.j-walk.com/ss/excel/eee/index.htm

CONTENTS:

WORKSHEET FORMULAS:

Issue #1:

-defines a global range name

-sums comma delimited values in a cell

-creates an array of filtered items

Issue #2:

-returns special average for 3 lab results

-uses 13 nested IF arguments

-makes variable link to closed workbook

Issue #3:

-conditional format formula for value in the previous worksheet

-returns a running total across worksheets

-returns a 3D moving average

-makes a 3D array formula

Issue #4:

-returns the number of unique items

-returns the Nth largest unique value

-data validation formula allows only unique entries

-count of unique items based on a criteria

-creates array containing only unique items

Issue #5:

-string that contains only unique characters

-reverses the digits in a number

-reverses the characters in a string

-creates an inverted range

Issue #6: HYPERLINK formula for finding information from newsgroups

Issue #7: Formulas to tranform a string into a sorted string

Issue #8: Numerous formulas used in conditional formatting

Issue #9:

-Counts the number of cells discontiguous range based on a criteria

-Formula that allows reference to be used in defined name formula

Issue #10:

-Returns a 3D sum from sheet A to sheet B

-Formula for solving a set of simultaneous equations

Issue #11:

-case-sensitive MATCH function

-extract the phone number as text in form of 123-45678

-'bankers rounding' for a number to given number of significant digits.

Issue #12: reverse lookup formula with max value

Issue #13:

-using defined name formulas for creating a versatile consolidation

workbook that works without any programming [DOWNLOAD EXAMPLE FILE]

Issue #15:

-reverses the sequence of elements in a range

-returns TRUE if number is a prime number

VBA PROCEDURES:

Issue #1:

-indicates whether the path is empty or doesn't exist

-completely removes files and folders from a known directory

-obtains the name of the VBComponent that contains a specified procedure

Issue #2:

-creates a blinking cell effect

-returns values between points in a lookup table

-reads the arguments on the command line

Issue #3:

-custom function for SUMPRODUCT with 3D range argument

-custom function for SUMIF with 3D range argument

-custom function for COUNTIF with 3D range argument

Issue #4:

-counts unique values using advanced filter

-counts unique values using DAO

-counts unique values using pivot table

-counts unique values using collection object

Issue #5:

-prevents the user from using File, Save As

-creates a high performance timer

-finds a string across worksheets in a workbook

-stops links update box from apperaring when opening a file

-clears worksheet of data and leaves formulas intact

-prevents flickering when a procedure is run in the VBE

Issue #6:

-Creates a list of all number formats in use in the active workbook

-Procedure for removing tabs and carriage returns in worksheet cells

-Displays pop-up messages when the mouse cursor is rested over embedded charts

Issue #7:

-UDF to tranform a string into a sorted string

-Data encryption/decryption method for strings

-Procedure for manipulating custom number formats

Issue #8: UDFs used in conditional formatting

Issue #9:

-Finds cells on a worksheet containing data displayed as #####

-Prints out all cell comments from a workbook

-Procedure to look up Windows 95 serial number

-Turns off the 'Break on Unhandled Errors in Class Module'option in the VBE

-Returns information from a closed workbook with VBA

Issue #10:

-Procedure to disable the Excel close button

-Routine to clear only numbers from a selection

-Method for protecting a worksheet which can be filtered

-Making changes to a chart by filtering/hiding data

Issue #11:

-selects the real last used cell in a worksheet

-function returns the dimension order of an array (up to 4D)

-brings data into a worksheet from an external source using ADO

-prints (in the Immediate window) the same list of files displayed by the Edit-Links menu command

-displays the chart wizard dialog box

-adjusts the row height of a merged cell with wrap text set

-returns the named ranges that include the active cell

-searches through all worksheets in a workbook

Issue #12:

-procedure for the filling of formulas across worksheets to obtain sheet-relative formulas

-converts normal formulas to those that show an empty cell if an error condition exists in the original formula

Issue #13:

Issue #14:

-series of boolean functions associated with filtered lists

-procedure delinks all of the charts in a workbook

-opens an application through the use of the Shell function and it allows for the lag time involved with the opening process

-procedure removes all code and related structures from a workbook

-generalized procedures for converting data to a normalized form

-event procedures to place the contents of a cell into a cell comment when another entry is made

Issue #15:

-reads the names of all sheets in a closed workbook using ADO

-groups multiple worksheets and print a selection from the selected sheets all on one page

-general function for evaluate and replace using comparisons

-assigns a procedure to the Click event of a command button added to a form at run time

-adds an Add-In path dynamically while the add-in is loading

-finds all of the user-defined custom number formats in a workbook

EXCEL 2000:

Issue #1: Office Web Components can be used in UserForms

Issue #2: use of the ID property

Issue #3: new data handling tools

Issue #4: new settings under Tools, Options

Issue #5: procedure showing use of modeless UserForm - automatic charting

Issue #6: Cannot create interactive web pages with just Excel 2000

Issue #7:

-Problems associated with copy/paste

-Create array formula in Spreadsheet Component

Issue #9: Problem with workbook containing a hyperlink saved as a Web page

Issue #10: Steps for creating a COM add-in

TIPS AND TECHNIQUES:

Issue #2: create a hyperlink from an object to a VBA procedure

Issue #3:

-Excel functions used in 3D formulas

-inserting rows in 3D named ranges

Issue #4: Office Spreadsheet Component has more columns than Excel

Issue #5: locate information on Excel viruses

Issue #7: Spreadsheet Component calculates dates differently than Excel

Issue #8: Combining worksheet controls with conditional formatting

Issue #9:

-Registers functions into user-defined catagories and provides descriptions for their arguments

-Method for providing additional security for passwords

Issue #10: URL for comprehensive Excel/XML information at Microsoft web site

Issue #11:

-list of web sites for products that will find/remove passwords

-workaround to formatting problems associated with merged cells

-quick way to freeze formulas to values on a worksheet

-using the UserInterfaceOnly argument of the Protect method

Issue #12:

-use defined names in a workbook that are defined in another workbook

-URL for David McRitchie's Excel web site

Issue #14: URL for Rob Bovey's Excel web site

Issue #15: URL’s for Ole P.'s and Aaron Blood's Excel web sites

COMMENTS

Welcome to the first issue of the Excel Experts E-letter (or EEE), by David Hager. My current plan is to make EEE a semi-monthly publication. If you received this file as an attachment to an e-mail message sent on ~ 16Mar1999, that means you are among the 100 or so people I collected e-mail addresses for as a starting point to send EEE to the top Excel experts worldwide. I looked in newsgroups, forums, web pages, books, magazines and e-lists to find you, but I did not find everyone. Also, there are quite a few Excel experts out there that I have names for, but no e-mail addresses. So, if you know of someone whom you consider to be an Excel expert and they are not currently receiving EEE, ask them to send their name and e-mail address to me at dchager@compuserve.com.

My vision for EEE is for it to be based on meaty content. I have collected a lot of material over the last 5 years on Excel, and I will try to present what I feel is of interest to the majority of people on this list. In most cases, I will use tidbits that were gleaned from postings on Excel newsgroups, forums and e-lists, and I will attempt to give credit to the creator of the tip. If you object to the use of your name, let me know. On the flip side, if you have any new and great ideas, send them to me and I will include them in a future issue. I don't plan to issue any challenges to solve Excel problems in EEE, but it is likely that many of you have made some interesting discoveries during the course of your work that you have never had the chance to share with anyone. Let EEE be the vehicle for the presentation of that Excel gem!

TOP EXCEL WEB SITES

Tied for the top spot:

www.j-walk.com

www.bmsLTD.co.uk

WORKSHEET FORMULA TIPS

Created by Bob Umlas and David Hager

To define a global range name in Excel, go to Insert, Name, Define and, as an example, in the Names in Workbook box type "cellA1" and in the Refers To box type this formula: =OFFSET(!A1,,,,). Now, type =cellA1 in a cell on any worksheet in the workbook and it will return the value in A1 for that worksheet.

Created by David Hager

To add comma delimited values in a cell (such as 1,2,11,4 in cell A1) to the right of the cell containing the string, highlight cell B1 (for this case) and create the following defined name formula (called "csum"):

=EVALUATE(SUBSTITUTE(A1,",","+"))

Then, type =csum in B1 to obtain the result (18, in this case).

POWER FORMULA TECHNIQUE

Created by Laurent Longre:

The problem - how to create an array of filtered items in a column list. The SUBTOTAL function allows you to operate on an array of this type with a limited number of worksheet functions, but it does not expose the array for formula manipulation. Laurent came up with an elegant soution to this problem, based on an obscure behavior of the OFFSET function. It turns out that when an array is used as the 2nd argument of OFFSET, such as

=OFFSET(Rge,ROW(Rge)-MIN(ROW(Rge)),,1)

an array of RANGES is returned. If the array is properly sized, as in this example, the OFFSET function return a separate single cell range for each cell in the original range(Rge). Thus, if this array of arrays is operated on by the SUBTOTAL function, each single cell range gets evaluated separately. So, the formula

=SUBTOTAL(3,OFFSET(Rge,ROW(Rge)-MIN(ROW(Rge)),,1))

evaluates as 1 for each cell that is visible and as 0 if the cell is not visible. The use of 3 as the 1st argument in SUBTOTAL counts the number of items in the visible range. Since there is only one item in each range, the answer can only be 0 or 1. Thus, this formula can be used as an array which indicates the rows in the list that are filtered and unfiltered. If you want to returns an array of items in the column list, then use:

=IF(SUBTOTAL(3,OFFSET(Rge,ROW(Rge)-MIN(ROW(Rge)),,1)),Rge,"")

VBA CODE EXAMPLES

Created by Rob Bovey:

Uses path as argument and it returns True if the path is empty or doesn't exist and False if the path contains files.

Function bIsEmpty(ByVal szPath As String) As Boolean

 Dim bReturn As Boolean

 Dim szTemp As String

 bReturn = True

 If Right$(szPath, 1) <> "\" Then szPath = szPath & "\"

 szTemp = Dir$(szPath & "*.*")

 If szTemp <> "" Then bReturn = False

 bIsEmpty = bReturn

End Function

Created by Jim Rech:

Removes a known directory including all of its files and any/all possible sub-directories of unknown quantity & name/s including their files.

Const FO_DELETE = &h3&

Const FOF_NOCONFIRMATION = &h10&

Private Type SHFILEOPSTRUCT

 hwnd As Long

 wFunc As Long

 pFrom As String

 pTo As String

 fFlags As Integer

 fAnyOperationsAborted As Long

 hNameMappings As Long

 lpszProgressTitle As String

End Type

Private Declare Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory"

(hpvDest As Any, hpvSource As Any, ByVal cbCopy As Long)

Private Declare Function SHFileOperation Lib "Shell32.dll" Alias

"SHFileOperationA" (lpFileOp As Any) As Long

Sub Test()

 ShellDelete "c:\aaa"

End Sub

Sub ShellDelete(SrcFile As String)

 Dim result As Long

 Dim lenFileop As Long

 Dim foBuf() As Integer

 Dim fileop As SHFILEOPSTRUCT

 lenFileop = LenB(fileop)

 ReDim foBuf(1 To lenFileop)

 With fileop

 .hwnd = 0

 .wFunc = FO_DELETE

 .pFrom = SrcFile & Chr(0) & Chr(0)

 .fFlags = FOF_NOCONFIRMATION

 .lpszProgressTitle = "" & Chr(0) & Chr(0)

 End With

 Call CopyMemory(foBuf(1), fileop, lenFileop)

 Call CopyMemory(foBuf(19), foBuf(21), 12)

 result = SHFileOperation(foBuf(1))

End Sub

Created by Bill Manville:

Checks whether a name exists in a collection. For example, If IsIn(ActiveWorkbook.Names, "ThisOne") Then ...

Function IsIn(oCollection As Object, stName As String) As Boolean

 Dim O As Object

 On Error Goto NotIn

 Set O = oCollection(stName)

 IsIn = True
'succeeded in creating a pointer to the object so must be there

NotIn:

End Function

POWER PROGRAMMING TECHNIQUE

Created by Stephen Bullen

The problem - you want to programatically obtain the name of the VBComponent that contains a specified procedure. Stephen's solution was to look for unique strings, since the VBIDE object model does not provide functionality for doing this directly.

Sub TestIt()

MsgBox fnThisVBComponent(ThisWorkbook, "This Unique String").Name & ", " & fnThisProcedureName(ThisWorkbook, "Another Unique String")

End Sub

Function fnThisVBComponent(oBk As Workbook, sUniqueString As String) As VBComponent

Dim oVBC As VBComponent

'Loop through the VBComponents in the given workbook's VBProject

For Each oVBC In oBk.VBProject.VBComponents

 'Using it's code module

 With oVBC.CodeModule

 'See if we can find the unique string

 If .Find(sUniqueString, 1, 1, .CountOfLines, 1000, True, True, False) Then

 'Found it, so return the VBComponent where it was found

 Set fnThisVBComponent = oVBC

 Exit For

 End If

 End With

Next

End Function

Function fnThisProcedureName(oBk As Workbook, sUniqueString As String) As String

Dim oVBC As VBComponent

Dim lStart As Long, sProcName As String, vaProcs As Variant, vProcType As Variant

'Specify the row number of where to start the find. This is set by the Find method to give the (starting) line number where the text was found

lStart = 1

'Loop through the VBComponents in the given workbook's VBProject

For Each oVBC In oBk.VBProject.VBComponents

 'Using it's code module

 With oVBC.CodeModule

 'See if we can find the unique string

 If .Find(sUniqueString, lStart, 1, .CountOfLines, 1000, True, True, False) Then

 'We found it, so make an array of the available procedure types to check for

 vaProcs = Array(vbext_pk_Proc, vbext_pk_Get, vbext_pk_Let, vbext_pk_Set)

 'Loop through the procedure types

 For Each vProcType In vaProcs

 'Get the name of the procedure containing the line we found above

 sProcName = .ProcOfLine(lStart, CLng(vProcType))

 'Did we get a procedure name?

 If sProcName <> "" Then

 'We did, so return it

 fnThisProcedureName = sProcName

 Exit For

 End If

 Next

 Exit For

 End If

 End With

Next

End Function

EXCEL 2000 TIP

If you have had the opportunity to use beta versions of Excel 2000, then you probably realize the great potential of the web-interactive Excel file formats and their corresponding Office Web Components (OWC). Something you might not realize (or had a chance to play with yet) is that the OWC's can also be used with UserForms! It opens up a Pandora's Box of possibilities.

Issue No.1 OF EEE (PUBLISHED 16MAR1999)

Next issue scheduled for 01APR1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the second issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues.

I am overwhelmed by the positive responses I received about the 1st issue of EEE and I appreciate your kind words. The mailing list for EEE is up above 170 now. I have had to look far and wide on the Internet to find you, and frankly it has taken more time to do this than writing this newsletter. I had some trouble with the stability of my mailing list on the 1st issue, and many people that I believed were on the list were not. If you would like a copy of the 1st issue, send me a note and I will be happy to pass it along. Many of you have indicated that you would like to contribute your ideas. I look forward to seeing them!

TOP EXCEL WEB SITES

Do you need an Excel formula?

http://home.gvi.net/~cpearson/excel.htm

WORKSHEET FORMULA TIPS

Created by David Hager

In a lab a test is performed in triplicate. If 2 of the values are the same, those 2 values are averaged. Otherwise, all 3 of the values are averaged. An array formula that returns a result based on this protocol is:

=AVERAGE(IF(SUM(COUNTIF(Rng,Rng))=3,Rng,IF(COUNTIF(Rng,Rng)>1,Rng,"")))

where Rng is a three cell range containing those values.

Created by Chip Pearson

The IF function has a limit of 7 nested arguments. Chip's formula circumvents that inherent limitation.

Define this formula as OneToSix:

=IF(A4=1,11,IF(A4=3,22,IF(A4=5,33,IF(A4=7,44,IF(A4=9,55,IF(A4=11,44,IF(A4=13,55,IF(A4=15,66,FALSE))))))))

and this formula as SevenToThirteen:

=IF(A4=17,77,IF(A4=19,88,IF(A4=21,99,IF(A4=23,100,IF(A4=25,110,IF(A4=27,120,IF(A4=29,130,"NotFound")))))))

The combined formula looks like this:

=IF(OneToSix,OneToSix,SevenToThirteen)

POWER FORMULA TECHNIQUE

Created by Shane Devenshire and David Hager

The problem - to change a link in a formula without changing the formula. This can be done with the INDIRECT function by creating a concatenated string with input from several worksheet cells which contain workbook (in A1) and worksheet (in B1) names.
=INDIRECT("'["&A1&"]"&B1&"'!A1")

Unfortunately, this type of formula will only work if the referenced workbook is open. Shane came up with part of the solution to this problem when he discovered that the INDEX function can return a linked cell value from a hard-coded link range. For example, if you define a range as "ref1", where the linked range formula is:

=[Book1.xls]Sheet1!$1:$65536

(A smaller range starting at A1 can also by used.)

then you can use the formula:

=IF(ISERR(INDEX(ref1,ROW(),COLUMN())),"",INDEX(ref1,ROW(),COLUMN()))

in any cell and the returned value will be from the same cell in Book1.xls on Sheet1. Then, variable links to this formula can be made by changing the link range as referred to in a named formula. This formula is of the form:

=CHOOSE(Sheet2!A1-29*INT((Sheet2!A1-1)/29),ref1,ref2,...,ref29)

where Sheet2!A1 is an input cell for values from 1 to n which represent a particular link stored as a defined name. As you are probably aware, the CHOOSE can only accept 29 arguments. However, there is a workaround for this limitation, and the formula in the 1st argument is part of that process. It converts the value in Sheet2!A1 into a number between 1 and 29. Then, if you define the preceding formula as oref1 (and other similar formulas as oref(n)), you can use the following master formula:

=CHOOSE(INT((Sheet2!A1-1)/29)+1,oref1,oref2,...,oref29)

Now, if you give this formula a defined name (say mref), then the resulting "omnireference" can be used in place of ref1 in Shane's formula to produce an "omnilink" that is capable of returning values from 29 x 29 (841) different links. This formula is the one that is finally entered in a worksheet cell.

=mref

Note: This technique works great as long as the linked files are not moved, renamed or deleted.

VBA CODE EXAMPLES

Created by Bill Manville

To create a blinking cell:

If you define a new Style (Format / Style / Flash/ Add) and apply that style to the cells you want to flash, paste the following code into a module sheet and run the procedure Flash from Auto-Open (if desired) you will get the text flashing alternately white and red.

Dim NextTime As Date

Sub Flash()

 NextTime = Now + TimeValue("00:00:01")

 With ActiveWorkbook.Styles("Flash").Font

 If .ColorIndex = 2 Then .ColorIndex = 3 Else .ColorIndex = 2

 End With

 Application.OnTime NextTime, "Flash"

End Sub

Sub StopIt()

 Application.OnTime NextTime, "Flash", schedule:=False

 ActiveWorkbook.Styles("Flash").Font.ColorIndex = xlAutomatic

End Sub

Created by Myrna Larson

An UDF that returns values "between" the points in the lookup table.

 Function InterpolateVLOOKUP(x As Single, Table As Range, YCol As Integer)

 Dim TableRow As Integer, Temp As Variant

 Dim x0 As Double, x1 As Double, y0 As Double, y1 As Double

 Dim d As Double

 On Error Resume Next

 Temp = Application.WorksheetFunction.Match(x, Table.Resize(, 1), 1)

 If IsError(Temp) Then

 InterpolateVLOOKUP = CVErr(Temp)

 Else

 TableRow = CInt(Temp)

 x0 = Table(TableRow, 1)

 y0 = Table(TableRow, YCol)

 If x = x0 Then

 InterpolateVLOOKUP = y0

 Else

 x1 = Table(TableRow + 1, 1)

 y1 = Table(TableRow + 1, YCol)

 InterpolateVLOOKUP = (x - x0) / (x1 - x0) * (y1 - y0) + y0

 End If

 End If

 End Function

POWER PROGRAMMING TECHNIQUE

By Laurent Longre

There is a way for an auto-start macro to read the arguments on the command line (with Excel 97).
Assume that you want to read the command line arguments from an Auto_open sub in the workbook "c:\temp\test.xls" opened by a batch file (or by a Win95 shortcut).

1. Your command line should look like this one: start excel c:\temp\test /e/param1/param2/.../paramN

i.e. : after excel.exe, the name of the workbook containing the Auto_open, then the switch /e **immediately** followed by your own arguments. These arguments should be separated by "/" and form a continuous string without spaces.

For instance, if you want to pass the arguments "c:\temp\file1.dbf", "all" and "exclusive" to Excel, your command-line should look like: start excel c:\temp\test /e/c:\temp\file1.dbf/all/exclusive

2. In Test.xls, use the API function GetCommandLine (alias GetCommandLineA in Win95) to get the contents of this command-line string.

You should then parse the string returned by GetCommandLineA, search for the separators "/" and store each argument in an array. Here is an example of a such Auto_open sub:

Option Base 1

Declare Function GetCommandLineA Lib "Kernel32" () As String

Sub Auto_open()

 Dim CmdLine As String 'command-line string

 Dim Args() As String 'array for storing the parameters

 Dim ArgCount As Integer 'number of parameters

 Dim Pos1 As Integer, Pos2 As Integer

 CmdLine = GetCommandLineA 'get the cmd-line string

 On Error Resume Next 'for the worksheet-function "Search"

 Pos1 = WorksheetFunction.Search("/", CmdLine, 1) + 1 'search "/e"

 Pos1 = WorksheetFunction.Search("/", CmdLine, Pos1) + 1 '1st parameter
 Do While Err = 0

 Pos2 = WorksheetFunction.Search("/", CmdLine, Pos1)

 ArgCount = ArgCount + 1

 ReDim Preserve Args(ArgCount)

 Args(ArgCount) = Mid(CmdLine, Pos1, IIf(Err, Len(CmdLine), Pos2) - Pos1)
 MsgBox "Argument " & ArgCount & " : " & Args(ArgCount)

 Pos1 = Pos2 + 1

 Loop

End Sub

If you use the command-line above, this Auto_open sub will automatically store the three arguments ("c:\temp\file1.dbf", "all" and "exclusive") in the Args() array and display them.

Again, be sure that you don't insert any space between /e and each argument in the command-line, otherwise it could fail (Excel can believe that these "pseudo-arguments" are the names of workbooks to open at startup...).

EXCEL 2000 TIP

An intriguing property was added to the Range object in Excel 2000. It is the ID property. In the normal scheme of things, it assigns a string to a worksheet cell, which is used in a HTML tag when the worksheet is saved as a web page. If the worksheet is saved in a normal manner, the ID does not appear to be persistent. However, if ID's of cells are set when a workbook is opened, they can be used in some interesting ways. As an example, consider the following:

Sub Auto_Open()

 Sheets(1).Range("A1").ID = "Test"

End Sub

'in Sheet1 module

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

 If ActiveCell.Address <> Target.Address Then Exit Sub

 If Target.ID <> "" Then MsgBox Target.ID

End Sub

In this case, if A1 is selected, the MsgBox dialog will appear with the text "Test". Thus, this provides a method of creating cell comments that do not have to be stored with the cells. Further, if the assignment of ID strings to cells is criteria-based rather than address-based, then this provides a dynamic method of documenting cells of varying properties.

Another use of the ID property would be to apply the Collection class for the Tag property developed by Ken Getz and Mike Gilbert (shown in the Nov '98 issue of MOD magazine, p.36) to this system. I leave that as an exercise to the reader.

DID YOU KNOW?...

that you can create a hyperlink from an object to a VBA procedure. In Excel 97, make a text box on a worksheet and right-click its edge. Then, select Insert, Hyperlink from the menu and type the name of the procedure in the Named Location in File box.
NOTE: The manual setting of a procedure name as a hyperlink subaddress apparently cannot be done in Excel 2000. Not only does the dialog box not allow that option, it does not allow the use of names that do not yet exist, unlike Excel 97. In my opinion, there was no reason to add an extra validation step to see if the name exists, since the option to add the name at a later time increases the flexibility of this feature. However, you can still set/change the SubAddress of the hyperlink programatically in Excel 2000 for VBA procedures.

Issue No.2 OF EEE (PUBLISHED 01Apr1999)

Next issue scheduled for 16APR1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the third issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. In honor of this being the 3rd issue of EEE, I have decided to dedicate this issue to 3D solutions. As you might know, the 3D capabilities of Excel are lacking in several areas. However, this just provides fertile ground for growing those workarounds.

TOP EXCEL WEB SITES

For the best in 3D add-in functionality, check out:

http://perso.wanadoo.fr/longre/excel/pages/Downloads.htm

Also, check out the freeware file Make Excel 3D in the CompuServe Excel forum library for a comprehensive set of 3D custom functions.

WORKSHEET FORMULA TIPS

Excel allows you to make 3D formulas based on the following syntax:

Sheet1:Sheet4!A2:B5

However, the functions that can actually use that syntax are limited (although not as limited as the Excel documentation would lead you to believe). I put together the following list of functions that represent most, but probably not all, of those that are 3D-enabled:

AVERAGE, AVERAGEA, COUNT, COUNTA, MAX, MAXA, MIN, MINA, PRODUCT, STDEV, STDEVA, STDEVP, STDEVPA, VAR, VARA, VARP, VARPA, SMALL, LARGE, RANK, MEDIAN, PERCENTILE, QUARTILE, TRIMMEAN, SKEW, AND, OR, AVEDEV, DEVSQ, SUMSQ

BTW, If you create a defined name for this type of 3D range, be sure to group all of the sheets in that range if you decide to insert any rows into the area bounded by that range (if you want your 3D range to reflect the insertion of that row).

Created by David Hager

To make a conditional format based on the value in the previous worksheet, create the following defined name formulas.

GlobRef as:

=INDIRECT("rc",FALSE)

which gives the value from the cell it is used in. PrevShtValue as:

=INDIRECT(INDEX(GET.WORKBOOK(1),GET.DOCUMENT(87)-1)&"!"&ADDRESS(ROW(),COLUMN()))

which gives the value from the cell of the same address in the previous sheet. Then, combine these in yet another defined name formula.

GTPSV (this cell value is greater than previous sheet value) as:

=GlobRef>PrevShtValue

which is used as the conditional formatting formula (in Excel 97 and later versions).

POWER FORMULA TECHNIQUES

Created by David Hager

The problem - to make a 3D formula that adjusts in a z-relative manner when it is filled across worksheets. Two separate solutions to this problem that use a similar methodology are shown below.

Making a 3D Running Total -

This example uses information entered in column A, with the 3D Running Total formula in column B.

Define shtPos as:

This formula returns the sheet position of the active sheet as an integer.

=GET.DOCUMENT(87)

Define wsNames as:

This formula returns an array of sheet names in the active workbook.

=RIGHT(GET.WORKBOOK(1),LEN(GET.WORKBOOK(1))-FIND("]",GET.WORKBOOK(1)))

Define shtName as:

This formula returns the active sheet name.

=INDEX(wsNames,shtPos)

Note: The string returned from GET.DOCUMENT(76) could have been modified to obtain the active sheet name, but the method shown above was used since the modified array of sheet names was available (and needed for another 3D example).

Define RunningTotal as:

=EVALUATE("SUM(Sheet1:"&shtName&"!A"&ROW()&")")+NOW()*0

This formula returns the sum for the cell in column A for each worksheet from Sheet1 to the worksheet where the formula resides. For example, if the active sheet was Sheet4 and this formula was in B2, this formula (entered as =RunningTotal) would be the equivalent of the Excel formula =SUM(Sheet1:Sheet4!A2). Since this formula incorporates xlm macro functions, it must be forced to recalculate. This is done by using the term NOW()*0, since NOW() is a volatile function.

Making a 3D Moving Average -

Define shtNamem2 as:

=INDEX(wsNames,shtPos-2)

This formula returns the sheet name of the worksheet 2 tabs to the left of the active sheet.

Define MovingAverage as:

=EVALUATE("AVERAGE("&shtNamem2&":"&shtName&"!A"&ROW()&")")+NOW()*0

This formula returns the average of the values in the sheet 2 tabs to the left of the active sheet to the active sheet. For example, if the active sheet was Sheet4 and this formula (entered as =MovingAverage) was in B2, this formula would be the equivalent of the Excel formula =AVERAGE(Sheet2:Sheet4!A2).

Created by Laurent Longre

The problem - to make a 3D worksheet array formula. What this means is to create an array representing a z-range (a range across worksheets) that evaluates in the formula bar as an array. The 3D range used in Excel, i.e.

Sheet1:Sheet4!A2:B5

does not behave that way. I suspect that nearly everyone on the EEE list has tried to do this and found that it was not possible. However, Laurent found that it was possible, given some advanced formula tricks. The INDIRECT function can return a 3D reference if it is operated on by the N function. An illustration of this type of formula is shown below.

3D Diagonal Formula -

=SUM(N(INDIRECT("Sheet"&{1,2,3}&"!"&ADDRESS({1,2,3},{1,2,3}))))

returns the sum of Sheet1!A1, Sheet2!B2 and Sheet3!C3. How does it work?

"Sheet"&{1,2,3}&"!"&ADDRESS({1,2,3},{1,2,3}) evaluates to the array of strings.

{"Sheet1!A1","Sheet2!B2","Sheet3!C3"}

When the INDIRECT function operates on this array, the expected array of values appear (by highlighting in the formula bar and pressing F9), but for some reason this array cannot be used by Excel functions. The use of the N function creates an array that can be used, so that the SUM function returns the desired result.

POWER PROGRAMMING TECHNIQUES

By Myrna Larson and David Hager

Presented below are 3 UDF's (SumProduct3D, SumIf3D, CountIf3D) that provide an useful method of returning a variety of information from 3D ranges. Each of these functions use a 3D range argument (written as per the usual Excel protocol) as a string. This string is processed by the Parse3DRange function, which returns sheet positions and the range argument in variables that are used by these functions.

 Function SumProduct3D(Range3D As String, Range_B As Range) As Variant

 Dim sRangeA As String, sRangeB As String, Sheet1 As Integer

 Dim Sheet2 As Integer, Sum As Double, n As Integer

 Application.Volatile

 If Parse3DRange(Application.Caller.Parent.Parent.Name, Range3D, Sheet1, Sheet2, sRangeA) = False Then

 SumProduct3D = CVErr(xlErrRef)

 Exit Function

 End If

 sRangeB = Range_B.Address

 Sum = 0

 For n = Sheet1 To Sheet2

 With Worksheets(n)

 Sum = Sum + Application.WorksheetFunction.SumProduct(.Range(sRangeA), .Range(sRangeB))

 End With

 Next

 SumProduct3D = Sum

 End Function

 Function SumIf3D(Range3D As String, Criteria As String, Optional Sum_Range As Variant) As Variant

 Dim sTestRange As String, sSumRange As String, Sheet1 As Integer

 Dim Sheet2 As Integer, n As Integer, Sum As Double

 Application.Volatile

 If Parse3DRange(Application.Caller.Parent.Parent.Name, Range3D, Sheet1, Sheet2, sTestRange) = False Then

 SumIf3D = CVErr(xlErrRef)

 End If

 If IsMissing(Sum_Range) Then

 sSumRange = sTestRange

 Else

 sSumRange = Sum_Range.Address

 End If

 Sum = 0

 For n = Sheet1 To Sheet2

 With Worksheets(n)

 Sum = Sum + Application.WorksheetFunction.SumIf(.Range(sTestRange), Criteria, .Range(sSumRange))

 End With

 Next n

 SumIf3D = Sum

 End Function

 Function CountIf3D(Range3D As String, Criteria As String) As Variant

 Dim Sheet1 As Integer, Sheet2 As Integer, sTestRange As String

 Dim n As Integer, Count As Long

 Application.Volatile

 If Parse3DRange(Application.Caller.Parent.Parent.Name, Range3D, Sheet1, Sheet2, sTestRange) = False Then

 CountIf3D = CVErr(xlErrRef)

 Exit Function

 End If

 Count = 0

 For n = Sheet1 To Sheet2

 With Worksheets(n)

 Count = Count + Application.WorksheetFunction.CountIf(.Range(sTestRange), Criteria)

 End With

 Next n

 CountIf3D = Count

 End Function

 Function Parse3DRange(sBook As String, SheetsAndRange As String, FirstSheet As Integer, LastSheet As Integer, sRange As String) As Boolean

 Dim sTemp As String, i As Integer, Sheet1 As String, Sheet2 As String

 Parse3DRange = False

 On Error GoTo Parse3DRangeError

 sTemp = SheetsAndRange

 i = InStr(sTemp, "!")

 If i = 0 Then Exit Function

 'next line will generate an error if range is invalid

 'if it's OK, it will be converted to absolute form

 sRange = Range(Mid$(sTemp, i + 1)).Address

 sTemp = Left$(sTemp, i - 1)

 i = InStr(sTemp, ":")

 Sheet2 = Trim(Mid$(sTemp, i + 1))

 If i > 0 Then

 Sheet1 = Trim(Left$(sTemp, i - 1))

 Else

 Sheet1 = Sheet2

 End If

 'next lines will generate errors if sheet names are invalid

 With Workbooks(sBook)

 FirstSheet = .Worksheets(Sheet1).Index

 LastSheet = .Worksheets(Sheet2).Index

 'swap if out of order

 If FirstSheet > LastSheet Then

 i = FirstSheet

 FirstSheet = LastSheet

 LastSheet = i

 End If

 i = .Worksheets.Count

 If FirstSheet >= 1 And LastSheet <= i Then Parse3DRange = True

 End With

Parse3DRangeError:

 On Error GoTo 0

 Exit Function

 End Function 'Parse3DRange

EXCEL 2000 INFORMATION

Although the ability to manipulate data with worksheet formulas did not change in Excel 2000, the other data handling features in Excel 2000 more than made up for this. In fact, IMHO, it is now ready to take on high-level data intensive corporate projects that previously could only be accomplished with a variety of tools. Among these are interactive web pages, Office Web Components, Pivot Tables and Charts, web queries, a greatly enhanced QueryTable object model, and OLAP cube technology. I plan to provide examples of each of these in upcoming issues (with a little help from the readership, I hope).

Issue No.3 OF EEE (PUBLISHED 15/16Apr1999)

Next issue scheduled for 01MAY1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the fourth issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues.

Again, I have selected a theme for this issue. This time it is dealing with unique items in a dataset.

Remember that EEE is devoted to sharing ideas across the Excel developer community, so if you have some great Excel technique that is not well-known, send it to me and I will include it in a future issue.

For back issues of EEE, check out:

http://www.j-walk.com/ss/excel/eee/index.htm

TOP EXCEL WEB SITES

There is a wealth of information at the following site.

http://www.baarns.com/IE4/index_devonly.asp

However, new material has not been added in quite some time.

WORKSHEET FORMULA TIPS

Created by David Hager

This array formula returns the number of unique items in a worksheet range.

=SUM(1/COUNTIF(Rng,Rng))

However, if Rng contains blank cells, this formula returns an error. In this case, use this modified version of the formula.

=SUM(COUNTIF(Rng,Rng)/IF(NOT(COUNTIF(Rng,Rng)),1,COUNTIF(Rng,Rng))^2)

Created by David Hager

This array formula returns the Nth largest unique value in a column range.

=LARGE(IF(MATCH(Rng,Rng,0)=ROW(Rng)-MIN(ROW(Rng))+1,Rng,""),N)

Created by David Hager

To apply data validation to a column which allows only unique items to be entered, highlight that column and select (in Excel 97 and later versions) Data, Validation from the menu. Choose the custom option and enter the following formula (for column A):

=COUNTIF(A1:A1,A1)=1

Created by Laurent Longre

This formula counts the number of unique items a column range, only if the cells in the lookup range contain the specified string.

=SUM(N(FREQUENCY(IF(lookupRange="specifStr",MATCH(colRange,colRange,0)),MATCH(colRange,colRange,0))>0))

POWER FORMULA TECHNIQUE

Created by David Hager, Bob Umlas and Laurent Longre

The problem - to create an array containing only the unique items from an expanding column list. In other words, if items are typed down column A, what is the formula that will return the unique items? The following example further illustrates the problem.

ColA

a

b

1

b

3

In this case, the array should be {"a";"b";1;3}. Then, if additional values are added:

a

b

1

b

3

c

1

d

a

b

the array should be {"a";"b";1;3;"c";"d"}. The answer to this problem has eluded me for years, but with recent input from Bob and Laurent, I have successfully constructed a solution to this problem. The formula is somewhat long, so it is necessary to define parts of the formula to simplify the final form.

Define TheList as:

=OFFSET(Sheet1!A1,,,COUNTA(Sheet1!$A:$A),)

This formula creates the expanding range for the items as they are entered into column A.

Define sArray as:

=SMALL(IF(MATCH(TheList,TheList,0)=ROW(TheList),ROW(TheList),""),ROW(INDIRECT("1:"&SUM(N(MATCH(TheList,TheList,0)=ROW(TheList))))))-1

This formula contains several important elements that require explanation. The formula =IF(MATCH(TheList,TheList,0)=ROW(TheList),ROW(TheList),"") returns an array of positions for the unique items that is the same size as the TheList array, where the duplicates items are now represented by empty strings. The formula ROW(INDIRECT("1:"&SUM(N(MATCH(TheList,TheList,0)=ROW(TheList))))) returns an array of numbers from 1 to n, where n is the number of unique items in the list, as calculated by the formula SUM(N(MATCH(TheList,TheList,0)=ROW(TheList))). What is desired is an array that contains the unique positions with no empty strings. This is accomplished by the use of the SMALL function which, along with the LARGE function, is unique among Excel functions in its ability to create different sized arrays than the array used in the 1st argument if the 2nd argument is also an array. The -1 is used to adjust the item positions for use in the formula shown below.

Define TheUniqueArray as:

=IF(T(OFFSET(TheList,sArray,,1))="",N(OFFSET(TheList,sArray,,1)),T(OFFSET(TheList,sArray,,1)))

The formula OFFSET(TheList,sArray,,1) is an array of single element arrays, as explained in detail in the 1st issue of EEE. It can be converted into a normal array by using the N or T functions. Both N and T are used here since TheList can contain either text or numeric items.

WARNING: Although this technique works, it must not be applied to situations where there are large arrays (>1000 items). Excel's calculation engine runs much too slowly on this type of formula. For example, it calculates ~100 times slower than the programming techniques for counting unique items that are shown below for an array of 5000 items.

VBA CODE EXAMPLES

Here are four examples of counting unique values in a list. Each of these examples creates an array of the unique items, so they can be modified to use those arrays for a purpose other than just counting the unique items.

Created by David Hager

Sub cMethodAdvFilter()

 CountUniqueByAdvFilter Selection.Address

End Sub

Sub CountUniqueByAdvFilter(mRange As String)

 Dim TheRange As String

 Application.ScreenUpdating = False

 TheRange = "'[" & ActiveWorkbook.Name & "]" & ActiveSheet.Name & "'!" & mRange
 Workbooks.Add

 Range(TheRange).AdvancedFilter Action:=xlFilterCopy, CopyToRange:=Range("A1"), Unique:=True

 MsgBox Application.WorksheetFunction.CountA(Range("A:A"))

 ActiveWorkbook.Close False
 Application.ScreenUpdating = True

End Sub

Created by Keyuan Jiang

 Sub cMethodDAO()

 Dim strDBFullName As String

 Dim dbData As Database, rstWork As Recordset, strSQL As String

 strDBFullName = ThisWorkbook.Path & "\" & ThisWorkbook.Name

 strSQL = "select distinct [your_field] from dataarea"

 'Appropriate driver needed for this statement

 Set dbData = OpenDatabase(strDBFullName, False, True, "Excel8.0;HDR=YES;")

 Set rstWork = dbData.OpenRecordset(strSQL)

 rstWork.MoveLast

 MsgBox rstWork.RecordCount

 Set rstWork = Nothing

 Set dbData = Nothing

 End Sub

where [your_field] is the header of the column you are interested in and the dataarea is a named area that contains all data in question (could be the single column you are interested in).

By David Hager

Sub CountUniqueByPivotTable()

 On Error GoTo uOut

 Application.ScreenUpdating = False

 Application.DisplayAlerts = False

 TheHeader = ActiveCell.Value

 ActiveSheet.PivotTableWizard SourceType:=xlDatabase, SourceData:=ActiveSheet.Name & "!" & _

 Selection.Address, TableDestination:="", TableName:="uPivotTable"

 ActiveSheet.PivotTables("uPivotTable").AddFields RowFields:=TheHeader

 ActiveSheet.PivotTables("uPivotTable").PivotFields(TheHeader).Orientation = xlDataField

 MsgBox Application.WorksheetFunction.CountA(Range("A:A")) - 3

 ActiveSheet.Delete

uOut:

 Application.ScreenUpdating = True

 Application.DisplayAlerts = True

End Sub

By John Walkenbach

Sub cMethodByCollection()

 CountUniqueByCollection Selection.Address

End Sub

Sub CountUniqueByCollection(AllCells As String)

 Dim NoDupes As New Collection

 On Error Resume Next

 For Each Cell In Range(AllCells)

 NoDupes.Add Cell.Value, CStr(Cell.Value)

'Note: the 2nd argument (key) for the Add method must be a string

 Next Cell

 MsgBox NoDupes.Count

 On Error GoTo 0

End Sub

Although not tested extensively, it appears that the procedure that uses the Collection object produces the fastest result.

EXCEL 2000 TIP

Under Tools, Options, View there is a checkbox entitled "Windows in Taskbar". When it is checked, every file/window that is open in Excel has its own Taskbar button. Uncheck that box if you do not want this feature. Under View, Toolbars, Customize, Options there is a checkbox entitled "Menus show recently used commands first". When it is checked, menu items change their position based how often they are used. Uncheck that box if you do not want this feature.

DID YOU KNOW?...

that the Office Spreadsheet Component can have up to 676 columns.

Issue No.4 OF EEE (PUBLISHED 30Apr1999)

Next issue scheduled for 16MAY1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 5th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. Starting with issue #6, EEE will no longer be directly mailed. New issues are normally available on the 1st and 16th of each month.

It is becoming difficult to continue to credit the originator of the techniques I present in EEE, but I will continue to assign credit when I know the source. Please continue to submit your best tips, techniques and procedures so that all can benefit from your creations.

TOP EXCEL WEB SITES

Visit Dave Steppan's web page at:

http://www.geocities.com/SiliconValley/Network/1030/ExcelTop.html

for some great tips and downloadable files.

WORKSHEET FORMULA TIPS

Created by David Hager

Here is an array formula that will return TRUE if all of the characters in a string (in A1 in this example) are unique and return FALSE if not.

=SUM(N(MATCH(MID(A1,ROW(INDIRECT("1:"&LEN(A1))),1),MID(A1,ROW(INDIRECT("1:"&LEN(A1))),1),0)=ROW(INDIRECT("1:"&LEN(A1)))))=LEN(A1)

Created by David Hager

This array formula reverses the digits in a number.

=SUM(VALUE(MID(A1,ROW(INDIRECT("1:"&LEN(A1))),1))*10^(ROW(INDIRECT("1:"&LEN(A1)))-1))

Created by Laurent Longre

This formula reverses the characters in a string. Note that the CALL function is disabled by the Microsoft Excel CALL patch.

Under Windows, text length < 256 characters :

=CALL("Msvcrt40","_strrev","1F","String to reverse")

POWER FORMULA TECHNIQUE

Created by David Hager and "unknown"

The problem: to create an inverted range. The following array formula does this, but in a very strange way. The example uses the information shown below.
A1:D1 = {1,2,3,4}

A5:D5 = {5,6,7,5}

=SUM({1,2,3,4}*{5,7,6,5}) = 57

Note that the 2nd array has been inverted. This formula returns an answer of 57, which is (1*5)+(2*7)+(3*6)+(4*5). The following formula also returns this result, but only when entered in a certain way. If you enter this formula in a single cell, it returns an answer of 50. However, if the same formula is array-entered in two cells, each cell will return the corrrect answer. The reason for this behavior is not known.

=SUM(A1:D1*INDEX(A5:D5,5-COLUMN(A5:D5)))

A formula that returns an inverted column range is shown below. The range being inverted in this example is iRng.

=IF(T(OFFSET(iRng,ROWS(iRng)-ROW(OFFSET(A1,,,ROWS(iRng),)),,,))="",N(OFFSET(iRng,ROWS(iRng)-ROW(OFFSET(A1,,,ROWS(iRng),)),,,)),T(OFFSET(iRng,ROWS(iRng)-ROW(OFFSET(A1,,,ROWS(iRng),)),,,)))

The key to this formula is the array of inverted cell positions created by

ROWS(iRng)-ROW(OFFSET(A1,,,ROWS(iRng),)).

VBA CODE EXAMPLES

This procedure prevents the user from using File, Save As.

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)

 If SaveAsUI Then Cancel = True

End Sub

By Jim Rech

This procedure creates a high performance timer.

Declare Function QueryPerformanceFrequency Lib "kernel32"(lpFrequency As LARGE_INTEGER) As Long

Declare Function QueryPerformanceCounter Lib "kernel32"(lpPerformanceCount As LARGE_INTEGER) As Long

Type LARGE_INTEGER

 lowpart As Long

 highpart As Long

End Type

Sub TestHighResolutionTimer()

 Dim FirstCount As LARGE_INTEGER

 Dim SecondCount As LARGE_INTEGER

 Dim TimerOverhead As Long, Counter As Long

 QueryPerformanceCounter FirstCount

 QueryPerformanceCounter SecondCount

 TimerOverhead = SecondCount.lowpart - FirstCount.lowpart

 QueryPerformanceCounter FirstCount

 ''Procedure to time

 For Counter = 1 To 10000000

 Next

 ''End procedure to time

 QueryPerformanceCounter SecondCount

 MsgBox "Timer counts: " & Format(SecondCount.lowpart - FirstCount.lowpart - TimerOverhead, "#,##0")

End Sub

Sub GetHighResolutionTimerFrequency()

 Dim Freq As LARGE_INTEGER

 If QueryPerformanceFrequency(Freq) = 0 Then

 MsgBox "Your computer does not support the high performance timer"

 Else

 MsgBox "Your computer's high resolution timer frequency is " & Format(Freq.lowpart, "#,##0") & " counts per second"

 End If

End Sub

By Bill Manville

This procedure finds a string (from a Textbox) across worksheets in a workbook.

Sub gFindIt()

Dim strWhat As String

Dim WS As Worksheet

Dim R As Range

strWhat = txtSearchFor.Text

If strWhat = "" Then Exit Sub

For Each WS In ActiveWorkbook.Worksheets

 Set R = WS.Cells.Find(What:=strWhat, After:=WS.Range("A1"), LookIn:=xlFormulas, LookAt :=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, MatchCase:= False)

 If Not R Is Nothing Then

 Application.Goto R, Scroll:=True

 Exit For

 End If

Next

End Sub

POWER PROGRAMMING TIPS

By Bill Manville

Is there any way to stop the links update box from apperaring when opening a file?

Answer:

You can open the file by Excel, specifying UpdateLinks:=0

So, you could create a new very small workbook, whose job is to open the main workbook, containing just:

Sub Auto_Open()

 Workbooks.Open ThisWorkbook.Path & "\RealOne.xls", UpdateLinks:=0

 ThisWorkbook.Close False

End Sub

By Bob Umlas

Is there a way to clear a worksheet model of data and leave the formulas intact?

Sub ResetModel()

 Range("A1").SpecialCells(xlCellTypeConstants, xlNumbers).ClearContents

End Sub

By Stephen Bullen

Can you prevent the flickering when a procedure is run in the VBE, similar to using Application.ScreenUpdating = False ?

Declare Function LockWindowUpdate Lib "user32" (ByVal hwndLock As Long) As Long

Sub SomeRoutine()

'Freeze the VBE window - same effect as ScreenUpdating

LockWindowUpdate Application.VBE.MainWindow.HWnd

‘code here

'Unfreeze the VBE window

LockWindowUpdate 0&

End Sub

EXCEL 2000 POWER PROGRAMMING TECHNIQUE

By David Hager

The following technique allows you to highlight data in a worksheet while displaying an UserForm that presents the data in chart form when the focus returns to the UserForm. This action can be repeated as many times as desired before closing the UserForm.

Place the event procedures in the module for an UserForm that is named chartssUserForm and the MakeNewChart procedure in a module in the same workbook. The UserForm needs to have a Spreadsheet object named Spreadsheet1 (which is not visible) and a ChartSpace object named ChartSpace1 (which is visible). The two events in the UserForm module each call the same procedure. This is a workaround for the lack of an event that is triggered when an UserForm loses or gains focus. A modeless UserForm is created in Excel 2000 by setting the ShowModal property to False in the Properties box.

Private Sub ChartSpace1_Click(ByVal ChartEventInfo As OWC.WCChartEventInfo)

 MakeNewChart

End Sub

Private Sub UserForm_Click()

 MakeNewChart

End Sub

Sub MakeNewChart()

 On Error GoTo NoChart

 With chartssUserForm

 .ChartSpace1.Clear

 .ChartSpace1.Charts.Add

 .ChartSpace1.DataSource = .Spreadsheet1

 .Spreadsheet1.Cells.Clear

 Application.ScreenUpdating = False

 Selection.Copy

 Sheets.Add

 Range("A1").PasteSpecial

 Selection.Copy

 .Spreadsheet1.ActiveSheet.Range("A1").Paste

 Application.DisplayAlerts = False

 ActiveWindow.SelectedSheets.Delete

 Application.DisplayAlerts = True

 Application.ScreenUpdating = True

 Set cr = .Spreadsheet1.ActiveSheet.Cells(1, 1).CurrentRegion

 TheMax = Application.WorksheetFunction.Max(Range(cr.Address))

 TheRows = cr.Rows.Count

 TheCols = cr.Columns.Count

 End With

 With chartssUserForm.ChartSpace1.Charts(0)

 For NumSeries = 1 To TheCols - 1

 .SeriesCollection.Add

 Next

 For n = 0 To TheCols - 2

 With chartssUserForm.Spreadsheet1.ActiveSheet

 theseriesnamesrange = .Cells(1, n + 2).Address

 thecatagoriesrange = .Range(.Cells(2, 1), .Cells(TheRows, 1)).Address

 thevaluesrange = .Range(.Cells(2, n + 2), .Cells(TheRows, n + 2)).Address

 End With

 With chartssUserForm.ChartSpace1.Charts(0).SeriesCollection(n)

 .SetData chDimSeriesNames, 0, theseriesnamesrange

 .SetData chDimCategories, 0, thecatagoriesrange

 .SetData chDimValues, 0, thevaluesrange

 End With

 Next

 .HasLegend = True

 .Axes(chAxisPositionLeft).NumberFormat = "General"

 .Axes(chAxisPositionLeft).MajorUnit = 0.1 * TheMax

 End With

 chartssUserForm.Show

 Exit Sub

NoChart:

 MsgBox "Your data range is not valid!", , "Try again"

End Sub

DID YOU KNOW?...

You can find a comprehensive list of Excel viruses at:

http://www.datafellows.com/v-descs/

by entering Excel in the Search Virus Description Database box.

Issue No.5 OF EEE (PUBLISHED 15May1999)

Next issue scheduled for 01Jun1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 6th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues.

My pronouncement in EEE #5 that EEE would no longer be directly mailed was premature. I have corrected some problems I was having with my e-mail software, so I will try to continue direct mailing for now.

I have received some corrections/improvements on a few of the items that have been published in EEE. I plan to start a section for this in the next issue. Another section that will debut to coincide with the release of Office 2000 in EEE #7 is the reporting of design irregularities associated with Excel 2000, and workarounds for these if they exist.

TOP EXCEL WEB SITES - WORKSHEET FORMULA TIP

Created by David Hager

If you want to find information posted in Internet newsgroups by a particular person, you can use the following technique. First, make a 4 column list as shown below (on Sheet1).

A B C D

Mike Jomes mjomes@abc.com Mike Jomes mjomes@abc.com

Kim Jimes kjimes@xyz.com Kim Jimes kjimes@def.com

etc.

where column D concatenates the information in columns A-C. Then, use that column as the list for Data Validation in a cell. Give the list a defined name such as addList if it is on another worksheet than the HYPERLINK formula shown below, as it is in this example). To make the list dynamic, use:

=OFFSET(Sheet1!D1,,,COUNTA(Sheet1!$D:$D),)

Create the Data Validation for cell D1 on Sheet2 (by using =addList as the lookup list). Then, type this formula in A1 on Sheet2 and fill to C1.

=OFFSET(Sheet1!A$1,MATCH($D$1,addList,0)-1,,,)

Finally, type this formula in A2 on Sheet2:

=HYPERLINK("http://www.deja.com/profile.xp?author=%22"&A1&"%20"&B1&"%22%20%3c"&C1&"%3e&ST=PS")

This creates a hyperlink that will return the newsgroup postings of the person you have selected from the list. I use this technique to obtain information posted by specific individuals in the Excel newsgroups.

VBA CODE EXAMPLES

Created by Rob Bovey

Creates a list of all number formats in use in the active workbook.

Sub ListNumberFormats()

 Dim lCount As Long

 Dim lRow As Long

 Dim rngCell As Range

 Dim szSheet As String

 Dim szFormat As String

 Dim szFormatArray() As String

 Dim wksSheet As Worksheet

 Dim wkbTargetBook As Workbook

 Dim wkbReportBook As Workbook

 Application.Calculation = xlCalculationManual

 Application.ScreenUpdating = False

 ReDim szFormatArray(0 To 0)

 szFormatArray(0) = "NumberFormats in Use:"

 Set wkbTargetBook = ActiveWorkbook

 For Each wksSheet In wkbTargetBook.Worksheets

 szSheet = wksSheet.Name

 lRow = 1

 For Each rngCell In wksSheet.UsedRange

 If rngCell.Row <> lRow Then lRow = rngCell.Row

 Application.StatusBar = "Determining NumberFormats in use. " & _

 "Checking worksheet " & szSheet & " row " & CStr(lRow)

 szFormat = rngCell.NumberFormat

 ''' If the current NumberFormat isn't already part of the array, add it.

 If IsError(Application.Match(szFormat, szFormatArray, 0)) Then

 lCount = lCount + 1

 ReDim Preserve szFormatArray(0 To lCount)

 szFormatArray(lCount) = szFormat

 End If

 Next rngCell

 Next wksSheet

 ''' Add a new workbook and dump the array into it.

 Set wkbReportBook = Workbooks.Add(xlWBATWorksheet)

 Set rngCell = wkbReportBook.Worksheets(1).Range("A1")

 For lCount = LBound(szFormatArray) To UBound(szFormatArray)

 rngCell.Offset(lCount, 0).Value = szFormatArray(lCount)

 Next lCount

 rngCell.EntireColumn.AutoFit

 Application.ScreenUpdating = True

 Application.StatusBar = False

 Application.Calculation = xlCalculationAutomatic

End Sub

[In the next issue, a method for deleting custom number formats that are not currently in use (created by Leo Hauser) will be presented.]

Created by Chip Pearson

Cleans up data by removing tabs and carriage returns in worksheet cells.

Sub CleanUp()

Dim TheCell As Range

For Each TheCell In ActiveSheet.UsedRange

 With TheCell

 If .HasFormula = False Then .Value = Application.WorksheetFunction.Clean(.Value)

 End With

Next TheCell

End Sub

POWER PROGRAMMING TECHNIQUE

By Victor Eldridge

The following code is written for Excel 97. It displays pop-up messages when the mouse cursor is rested over embedded charts. Unlike Excel 's built-in chart tips, XTips allows you to specify individual tips for every data point in every series. It also allows you to format the text, and the textbox. Unlike other techniques (that utilise a chart's MouseMove event), XTips avoids screen flicker when working with more than one chart.

To use it, copy the code below to a standard module and run the

 XTipsOn subroutine to turn them on.

 XTipsOff subroutine to turn them off.

It assumes that the Source Data for your charts is layed out vertically in columns, and further assumes that the column to the right of the source data, contains your personalized chart tips.

 For example :

 Series1 Series1 Series2 Series2 etc...

 Data Tips Data Tips

 20 What 88 More

 25 ever 74 of

 33 you 63 your

 29 like 93 own

 30 goes 72 chart

 27 here 85 tips

You will also need to place a TextBox (from the Drawing ToolBar) on each worksheet that contains a chart. Format it as you wish. NOTE: NOT an ActiveX textbox.

Known problems:

 * The Worksheet window must be maximised.

 * Excel's Zoom factor must be set to 100% .

 * Windows' Font size must be set to small.

 * Overlapping plot areas may have unpredictable results.

 * The Cursor & Status Bar do not show default Excel behaviour.

 * It does not support some chart types.

 * It does not support chart sheets.

 * Split windows & frozen panes will cause problems.

 * Compared to Excel's built-in chart tips, XTips is slow.

 That 's a pretty long list but everything else seems to work OK. Remember, XTips is only an alternative.

'API function to find out the position of the cursor.

Declare Function GetCursorPos Lib "user32" (lppoint As CursorCoords) As Long

Type CursorCoords

 X As Long

 Y As Long

End Type

Dim pos As CursorCoords

'API function to find out height of the Windows caption bar.

Declare Function GetSystemMetrics Lib "user32" (ByVal nIndex As Long) As Long

Public Const SM_CYCAPTION = 4

Dim PreviousX As Long, PreviousY As Long, CurrentX As Long

Dim CurrentY As Long

Dim GetIt As Variant

Dim Yoffset As Single

Dim Xoffset As Single

Dim NextTime As Date

Dim TLTop As Single, TLLeft As Single

Dim CurrentChart As Chart

Dim chrt As Object

Dim bar As Object

Dim Fix2D As Long

Dim I As Integer

Dim Counter As Integer

Dim X As Long, Y As Long

Dim ElementID As Long, SeriesIndex As Long, PointIndex As Long

Dim F As String

Dim StartOfRange As Integer, EndOfRange As Integer

Dim EndOfWorkbook As Integer

Dim SeriesRange As String, SeriesWorkbook As String, SeriesWorksheet As String

Sub XTipsOn()

 NextTime = Now + TimeValue("00:00:01")

 With Application

 .Cursor = xlNorthwestArrow

 .StatusBar = "Ready"

 .ShowChartTipNames = False

 .ShowChartTipValues = False

 .OnTime NextTime, "XTipsOn" 'Starts a recursive loop.

 End With

 Call GetXoffset

 Call GetYoffset

 'Get the current position of the cursor.

 PreviousX = pos.X - Xoffset - (Application.Left * 1.333) - 3

 PreviousY = pos.Y - Yoffset - (Application.Top * 1.333) - 4

 GetIt = GetCursorPos(pos)

 CurrentX = pos.X - Xoffset - (Application.Left * 1.333) - 3

 CurrentY = pos.Y - Yoffset - (Application.Top * 1.333) - 4

 On Error Resume Next 'happens when no textbox is on the worksheet.

 If CurrentX <> PreviousX Or CurrentY <> PreviousY Then 'The mouse is moving.

 ActiveSheet.TextBoxes(1).Visible = msoFalse

 Else: 'The mouse is at rest.

 If ActiveSheet.TextBoxes(1).Visible = msoFalse Then DisplayTip

 End If

 On Error GoTo 0

End Sub

Sub DisplayTip()

 'Gets the Top & Left values of the cell at the top,left of the screen.

 TLTop = Cells(ActiveWindow.ScrollRow, ActiveWindow.ScrollColumn).Top

 TLLeft = Cells(ActiveWindow.ScrollRow, ActiveWindow.ScrollColumn).Left

 'Works out which chart is underneath the cursor.

 For Each chrt In ActiveSheet.ChartObjects

 If (chrt.Left - TLLeft) * 1.333 < CurrentX And _

 (chrt.Left + chrt.Width - TLLeft) * 1.333 > CurrentX And _

 (chrt.Top - TLTop) * 1.333 < CurrentY And _

 (chrt.Top + chrt.Height - TLTop) * 1.333 > CurrentY _

 Then

 Set CurrentChart = ActiveSheet.ChartObjects(chrt.Index).Chart

 Exit For

 End If

 If chrt.Index = ActiveSheet.ChartObjects.Count Then ' There is no chart underneath the cursor.

 Exit Sub

 End If

 Next

 'Makes an adjustment if the chart does not have a 3D effect.

 On Error GoTo ChartIsNot3D

 Fix2D = CurrentChart.Floor.Interior.ColorIndex

 On Error GoTo 0

 'X & Y will be passed to the GetChartElement method.

 X = CurrentX - (CurrentChart.Parent.Left - TLLeft) * 1.333

 Y = CurrentY - (CurrentChart.Parent.Top - TLTop) * 1.333

 CurrentChart.GetChartElement X, Y, ElementID, SeriesIndex, PointIndex

 If ElementID <> 3 Then Exit Sub

 'Finds the range that contains the Series' Source Data.

 F = CurrentChart.SeriesCollection(SeriesIndex).Formula

 If Mid(F, 1, 10) <> "," _

 Then 'The chart has a range specified for X-axis labels.

 F = Left(F, 9) & Mid(F, InStr(10, F, ","))

 End If

 StartOfRange = InStr(1, F, "!")

 EndOfRange = InStr(StartOfRange + 1, F, ",")

 SeriesRange = Mid(F, StartOfRange + 1, EndOfRange - StartOfRange - 1)

 'Finds the Workbook & Worksheet containing the Series' Source Data.

 EndOfWorkbook = InStr(F, "]")

 If EndOfWorkbook > 0 Then 'The Source Data is in a separate Workbook.

 SeriesWorkbook = Mid(F, 13, EndOfWorkbook - 13)

 SeriesWorksheet = Mid(F, EndOfWorkbook + 1, (StartOfRange - EndOfWorkbook - 2))

 Else: 'The Source Data is in the Active Workbook.

 SeriesWorkbook = ActiveWorkbook.Name

 SeriesWorksheet = Mid(F, 11, InStr(1, F, "!") - 11)

 End If

 'Re-position, re-write & display the text box.

 With ActiveSheet.TextBoxes(1)

 .Left = (CurrentX / 1.333) + TLLeft + 5

 .Top = (CurrentY / 1.333) + TLTop + 12

 On Error GoTo WorkbookNotOpen

 .Characters(1).Insert String:= Workbooks(SeriesWorkbook).Worksheets(SeriesWorksheet). _

 Range(SeriesRange).Offset(PointIndex - 1, 1).Resize(1, 1).Value

 On Error GoTo 0

 .AutoSize = True

 .ShapeRange.ZOrder msoBringToFront

 .Visible = msoTrue

 End With

 Exit Sub

WorkbookNotOpen: ActiveSheet.TextBoxes(1).Characters(1).Insert String:= "The workbook containing" & Chr(10) & "the source data for this" & Chr(10) & "chart needs to be open."

 Resume Next

 Exit Sub

ChartIsNot3D: CurrentX = CurrentX - 1

 CurrentY = CurrentY - 1

 Resume Next

End Sub

Sub GetYoffset()

 'Adds up the heights of all toolbars docked at the top of the screen.

 'If multiple Toolbars share the same RowIndex, only one is counted.

 Yoffset = 0

 ReDim TheArray(0)

 For Each bar In Application.CommandBars

 If bar.Visible = True And bar.Position = msoBarTop Then

 For I = 1 To UBound(TheArray)

 If TheArray(I) = bar.RowIndex Then Yoffset = Yoffset - bar.Height : Exit For

 Next I

 Yoffset = Yoffset + bar.Height

 Counter = Counter + 1

 ReDim Preserve TheArray(Counter)

 TheArray(Counter) = bar.RowIndex

 End If

 Next

 'Accounts for the height of the Windows caption bar.

 Yoffset = Yoffset + GetSystemMetrics(SM_CYCAPTION)

 'Accounts for the height of the Formula Bar.

 If Application.DisplayFormulaBar = True Then Yoffset = Yoffset + 17

 'Accounts for the height of Column Headers.

 On Error Resume Next

 If ActiveWindow.DisplayHeadings = True Then Yoffset = Yoffset + 17

 On Error GoTo 0

End Sub

Sub GetXoffset()

 'Adds up the widths of all toolbars docked at the left of the screen.

 'If multiple Toolbars share the same RowIndex, only one is counted.

 Xoffset = 0

 ReDim TheArray(0)

 For Each bar In Application.CommandBars

 If bar.Visible = True And bar.Position = msoBarLeft Then

 For I = 1 To UBound(TheArray)

 If TheArray(I) = bar.RowIndex Then Xoffset = Xoffset - bar.Width : Exit For

 Next I

 Xoffset = Xoffset + bar.Width

 Counter = Counter + 1

 ReDim Preserve TheArray(Counter)

 TheArray(Counter) = bar.RowIndex

 End If

 Next

 'Makes an adjustment if any toolbars are docked at the left.

 If Xoffset > 0 Then Xoffset = Xoffset - 1

 'Accounts for the width of Row Headers.

 On Error Resume Next

 If ActiveWindow.DisplayHeadings = True Then

 Xoffset = Xoffset + 26

 'If your charts are near row 1000 or row 10000 ,

 'you may need to adjust the values 963 & 9963 .

 If ActiveWindow.ScrollRow > 963 Then Xoffset = Xoffset + 7

 If ActiveWindow.ScrollRow > 9963 Then Xoffset = Xoffset + 7

 End If

 On Error GoTo 0

End Sub

Sub XTipsOff()

 With Application

 .OnTime NextTime, "XTipsOn", schedule:=False

 .Cursor = xlDefault

 .StatusBar = False

 .ShowChartTipNames = True

 .ShowChartTipValues = True

 End With

 ActiveSheet.TextBoxes(1).Visible = msoTrue

End Sub

DID YOU KNOW?...

that if you upgrade only to Excel 2000 instead of Office 2000 that you cannot create interactive web pages. Unless you manipulate vast amounts of data, the creation of interactive web pages is really the only major change in Excel 2000 vs. Excel 97. Most users/power users might think that this is not a compelling reason to upgrade. However, even if you don't currently make web pages, you likely will soon since this interactivity allows for the placement of virtually any calculation model into an online environment, making everyone's worksheet constructs available to everyone on the company Intranet. Thus, the upgrade to Office 2000 is a must!

Issue No.6 OF EEE (PUBLISHED 01Jun1999)

Next issue scheduled for 16Jun1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 7th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues.

EXCEL 2000 DESIGN IRREGULARITIES

Considering the large amount of private and public beta testing of Excel 2000 and the relatively small number of changes that were made, you might have thought that this version would be basically error-free. Well, at least Microsoft is doing a good job of reporting problems. Here are some of the problems associated with copy/pasting.

When you copy and paste cells, copied formulas are pasted as static values; the formulas are not copied. This problem occurs when you copy cells that are not one contiguous range of cells. For example, you select the range A1:A5, C1:C5, copy the cells, and paste them all as one block in cell D1. This problem also existed in Excel 97. See:

http://support.microsoft.com/support/kb/articles/q210/7/25.asp

Since the new Office Clipboard stores only values, you cannot use it to copy/paste formulas. However, it may appear that you can, but the formulas are actually coming from the Windows Clipboard. See:

http://support.microsoft.com/support/kb/articles/q209/2/84.asp

There are problems with the cut/pasting of formulas containing 3D references. See:

http://support.microsoft.com/support/kb/articles/q215/2/17.asp

POWER FORMULA TECHNIQUE

Created by David Hager

The goal is to create a way to transform a string into a sorted string. This can be easily done with an user-defined function, as shown below.

Option Base 1

Function SortStr(uSortStr As String) As String

 Dim sArr()

 Dim newStr As String

 Dim store As String

 Dim strlen As Integer

 strlen = Len(uSortStr)

 ReDim sArr(strlen)

 For s = 1 To strlen

 sArr(s) = Mid(uSortStr, s, 1)

 Next

 For i = 1 To UBound(sArr) - 1

 For j = i + 1 To UBound(sArr)

 If sArr(i) > sArr(j) Then

 store = sArr(i)

 sArr(i) = sArr(j)

 sArr(j) = store

 End If

 Next

 Next

 newStr = ""

 For r = 1 To strlen

 newStr = newStr & sArr(r)

 Next

 SortStr = newStr

End Function

The SortStr function returns a string sorted in ascending order, but it could be easily modified with a second argument to choose ascending or descending order. Although this can be done with an UDF, the challenge is there to accomplish the same goal by just using worksheet formulas. Part of the solution shown below is somewhat kludgy, due to the lack of an Excel function that concatenates elements of an array into a string (perhaps this can be done with the CALL function, though). The following defined name formula transforms a string into a sorted array of characters that comprise the string (the active cell must be B1 during the creation of this formula).

Define sArr as:

=CHAR(SMALL(CODE(MID(A1,ROW(INDIRECT("1:"&LEN(A1))),1)),ROW(INDIRECT("1:"&LEN(!A1)))))

The MID function creates the array of characters. The CODE function returns the ASCII code number for each character in the array. The SMALL function sorts the array of code numbers in ascending order. Finally, the CHAR function returns the ASCII character for each code number in the array. In order to convert the array into a string, the following defined name formula was created for each character in the string.

Define zz1 as:

=IF(ISERROR(INDEX(sArr,1)),"",INDEX(sArr,1))

where the number argument in the INDEX function indicates the character position in the array.

These formulas are concatenated by the following defined name formula.

Define SortString as:

=zz1&zz2&zz3&zz4&zz5&...etc

Of course, this will only work for strings that <= the # of formulas that have been concatenated. Now, if you type =SortStr in a cell to the right of a cell containing a string, the sorted string will be returned. I don't know if there is a burning need for the preceding techniques, but it has been an interesting exercise.

VBA CODE EXAMPLES

Created by Rob Bovey

Here is a data encryption/decryption method for strings.

Option Explicit

Sub Test()

 Dim szTest As String

 szTest = "My dog has fleas."

 ''' Encrypt the string

 EncryptDecrypt szTest

 MsgBox szTest

 ''' Decrypt the string

 EncryptDecrypt szTest

 MsgBox szTest

End Sub

'This procedure is a quick and dirty encryption/decryption device. It will process as much text as you can load into a string variable and it is *very* fast. I've encrypted entire documents worth of text with it. You can store the encrypted text in a text file or the registry for later retrieval and decryption.

''' szData The string you want to encrypt/decrypt.

''' Pass the string through once to encrypt it.

''' Pass it through a second time to decrypt it.

'''

Sub EncryptDecrypt(ByRef szData As String)

 Const lKEY_VALUE As Long = 215

 Dim bytData() As Byte

 Dim lCount As Long

 bytData = szData

 For lCount = LBound(bytData) To UBound(bytData)

 bytData(lCount) = bytData(lCount) Xor lKEY_VALUE

 Next lCount

 szData = bytData

End Sub

Sub ViewDecrEncr()

 EncryptDecrypt "This is a test."

 MsgBox szData

End Sub

POWER PROGRAMMING TECHNIQUE

By Leo Heuser

This procedure provides a workaround for the glaring lack of accessibility in VBA for manipulating custom number formats. To do this, it hacks into the Number Format dialog box with SendKeys. It loops through each item, including those custom number formats that have been orphaned from the worksheet. The dialog box flickers upon each opening, but it works! If anyone comes up with a way to eliminate the flicker, let me know.

Sub DeleteUnusedCustomNumberFormats()

 Dim Buffer As Object

 Dim Sh As Object

 Dim SaveFormat As Variant

 Dim fFormat As Variant, nFormat() As Variant, xFormat As Long

 Dim Counter As Long, Counter1 As Long, Counter2 As Long

 Dim StartRow As Long, EndRow As Long

 Dim Dummy As Variant

 Dim pPresent As Boolean

 Dim NumberOfFormats As Long

 Dim Answer

 Dim c As Object

 Dim DataStart As Long, DataEnd As Long

 Dim AnswerText As String

 NumberOfFormats = 1000

 ReDim nFormat(0 To NumberOfFormats)

 AnswerText = "Do you want to delete unused custom formats from the workbook?"

 AnswerText = AnswerText & Chr(10) & "To get a list of used and unused formats only, choose No."

 Answer = MsgBox(AnswerText, 259)

 If Answer = vbCancel Then GoTo Finito

 On Error GoTo Finito

 Worksheets.Add.Move after:=Worksheets(Worksheets.Count)

 Worksheets(Worksheets.Count).Name = "CustomFormats"

 Worksheets("CustomFormats").Activate

 Set Buffer = Range("A2")

 Buffer.Select

 nFormat(0) = Buffer.NumberFormatLocal

 Counter = 1

 Do

 SaveFormat = Buffer.NumberFormatLocal

 Dummy = Buffer.NumberFormatLocal

 DoEvents

 SendKeys "{tab 3}{down}{enter}"

 Application.Dialogs(xlDialogFormatNumber).Show Dummy

 nFormat(Counter) = Buffer.NumberFormatLocal

 Counter = Counter + 1

 Loop Until nFormat(Counter - 1) = SaveFormat

 ReDim Preserve nFormat(0 To Counter - 2)

 Range("A1").Value = "Custom formats"

 Range("B1").Value = "Formats used in workbook"

 Range("C1").Value = "Formats not used"

 Range("A1:C1").Font.Bold = True

 StartRow = 3

 EndRow = 16384

 For Counter = 0 To UBound(nFormat)

 Cells(StartRow, 1).Offset(Counter, 0).NumberFormatLocal = nFormat(Counter)

 Cells(StartRow, 1).Offset(Counter, 0).Value = nFormat(Counter)

 Next Counter

 Counter = 0

 For Each Sh In ActiveWorkbook.Worksheets

 If Sh.Name = "CustomFormats" Then Exit For

 For Each c In Sh.UsedRange.Cells

 fFormat = c.NumberFormatLocal

 If Application.WorksheetFunction.CountIf(Range(Cells(StartRow, 2), Cells(EndRow, 2)), fFormat) = 0 Then

 Cells(StartRow, 2).Offset(Counter, 0).NumberFormatLocal = fFormat

 Cells(StartRow, 2).Offset(Counter, 0).Value = fFormat

 Counter = Counter + 1

 End If

 Next c

 Next Sh

 xFormat = Range(Cells(StartRow, 2), Cells(EndRow, 2)).Find("").Row - 2

 Counter2 = 0

 For Counter = 0 To UBound(nFormat)

 pPresent = False

 For Counter1 = 1 To xFormat

 If nFormat(Counter) = Cells(StartRow, 2).Offset(Counter1, 0).NumberFormatLocal Then

 pPresent = True

 End If

 Next Counter1

 If pPresent = False Then

 Cells(StartRow, 3).Offset(Counter2, 0).NumberFormatLocal = nFormat(Counter)

 Cells(StartRow, 3).Offset(Counter2, 0).Value = nFormat(Counter)

 Counter2 = Counter2 + 1

 End If

 Next Counter

 With ActiveSheet.Columns("A:C")

 .AutoFit

 .HorizontalAlignment = xlLeft

 End With

 If Answer = vbYes Then

 DataStart = Range(Cells(1, 3), Cells(EndRow, 3)).Find("").Row + 1

 DataEnd = Cells(DataStart, 3).Resize(EndRow, 1).Find("").Row - 1

 On Error Resume Next

 For Each c In Range(Cells(DataStart, 3), Cells(DataEnd, 3)).Cells

 ActiveWorkbook.DeleteNumberFormat (c.NumberFormat)

 Next c

 End If

Finito:

 Set c = Nothing

 Set Sh = Nothing

 Set Buffer = Nothing

End Sub

EXCEL 2000 PROGRAMMING TIP

Created by David Hager

The Spreadsheet Component has an extensive object model similar to Excel itself, but one of the features it does not have is the ability to use array formulas. Presented below is a workaround to that deficiency that allows the entering of an array formula in a Spreadsheet cell and the calculation of that formula to afford the result in the cell. However, the calculation is actually performed on a worksheet named "slink" in the workbook containing this application. So, for this to work you need an UserForm with a CommandButton (named CommandButton1) and a visible Spreadsheet Component (named Spreadsheet1) and the worksheet named "slink". Place this code in the UserForm module. When you want to calculate an array formula in the Spreadsheet Component, you click the button and type your formula in a cell. You can change what is initially in the Spreadsheet Component at design time, and that data is updated on the slink worksheet at run time by the Initialize event. Subsequent changes are handled by the Calculate event of the Spreadsheet Component.

Public EAF As Boolean

Private Sub CommandButton1_Click()

 EAF = True

End Sub

Private Sub Spreadsheet1_Calculate(ByVal EventInfo As OWC.SpreadsheetEventInfo)

 Dim pRange As Range

 Dim aCell As Range

 If Not EAF Then Exit Sub

 On Error Resume Next

 Application.EnableEvents = False

 If Spreadsheet1.ActiveCell.Formula = "" Then

 EAF = False

 Exit Sub

 End If

 Set pRange = ThisWorkbook.Worksheets("sLink").Range(Spreadsheet1.ActiveSheet.UsedRange.Address)

 Set aCell = ThisWorkbook.Worksheets("sLink").Range(Spreadsheet1.ActiveCell.Address)

 Spreadsheet1.ActiveSheet.UsedRange.Copy

 pRange.PasteSpecial

 Spreadsheet1.ActiveCell.Formula = Application.Evaluate(aCell.Formula)

 EAF = False

End Sub

Private Sub UserForm_Initialize()

 Dim pRange As Range

 Dim aCell As Range

 Application.EnableEvents = False

 Set pRange = ThisWorkbook.Worksheets("sLink").Range(Spreadsheet1.ActiveSheet.UsedRange.Address)

 Spreadsheet1.ActiveSheet.UsedRange.Copy

 pRange.PasteSpecial

End Sub

DID YOU KNOW?...

that the Spreadsheet Component calculates dates differently than Excel. In fact, it works much better! See: http://support.microsoft.com/support/kb/articles/q210/7/82.asp for details and http://support.microsoft.com/support/kb/articles/Q216/5/78.asp for information on calculation differences between Excel 2000 and the Spreadsheet Component.

Issue No.7 OF EEE (PUBLISHED 15Jun1999)

Next issue scheduled for 01Jul1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 9th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st and 16th of each month.

TOP EXCEL WEB SITES

An interesting product that allows Excel (version >5) to be used as an Internet data browser has just been released. You can find the details on this at: http://www.inventure.com

WORKSHEET FORMULA TIP

Created by Laurent Longre

This formula counts the number of cells in the discontiguous range that contain a value greater than 20.

=INDEX(FREQUENCY((A1,A3,A5),20),2)

POWER FORMULA TECHNIQUE

Created by Jan Karel Pieterse

This is an example of how to pass arguments to defined formulas. It consists of the named formula called Myref (see below), which evaluates the string of the formula of the "active" cell (the cell that calls one of the other named formulas in this example). In order to use these formulas, a trick is involved. The function must be called like this:

=IF(ROW(ref),NameOfTheDefinedFormula)

The Myref function finds the "Row(" part in the string of the formula and takes all text between that and the first closing paren to be a valid cell reference. Myref in part is used as an argument to the other functions.

Define Myref as:

=MID(GET.CELL(6,A1),FIND("ROW(",GET.CELL(6,A1))+4,FIND(")",GET.CELL(6,A1))-FIND("ROW(",GET.CELL(6,A1))-4)

Please take into account, that when defining this formula:

- your active cell HAS TO BE cell A1

- You should NOT use absolute refs (no dollar signs)

- You should NOT use sheetrefs ("Sheet1!")

- When editing Myref, you should REMOVE ALL sheetrefs Excel places there itself.

Note, that Myref has to be adapted for other language versions of Excel, which may have a different word for the ROW function (change the string "ROW(" and the two 4's in the formula accordingly).

IsFormula

=GET.CELL(48,INDIRECT(myref)))+0*now()

CellColor

=GET.CELL(63,indirect(MyRef))+0*now()

example:

=IF(ROW(D3),CellColor)

Shows the colournumber of the background of cell D3

RowIsHidden

=IF(GET.CELL(17,INDIRECT(Myref))=0,TRUE,FALSE)+0*now()

RowHeight

=GET.CELL(17,INDIRECT(Myref))+0*NOW()

VBA CODE EXAMPLES

By John Green

This procedure finds cells on a worksheet containing data displayed as #####...

Sub FindIncorrectDataDisplay()

 Dim rng As Range

 For Each rng In ActiveSheet.UsedRange

 If IsNumeric(rng.Value) And Left(rng.Text, 1) = "#" Then MsgBox "Column too narrow for " & rng.Address

 Next rng

End Sub

By Nick Hodge

This procedure prints out all cell comments from a workbook.

First, create a text file on your desktop, (or change the reference in the code), called test.txt and run the code below. This will write each comment, on all worksheets, with it's address and sheet no. to the txt file and close it.

Sub writeComments()

Dim mycomment As Comment

Dim mySht As Worksheet

Open "C:\Windows\Desktop\Test.txt" For Output As #1

For Each mySht In Worksheets

 On Error Resume Next

 For Each mycomment In Worksheets(mySht.Name).Comments

Print #1, "From " & mycomment.Parent.Parent.Name & mycomment.Parent.Address & " comes the comment: " & mycomment.Text

 Next mycomment

 On Error GoTo 0

Next mySht

Close #1

End Sub
By Laurent Longre

This procedure looks up the Windows 95 serial number.

Declare Function RegOpenKeyExA Lib "Advapi32" (ByVal hkey As Long, ByVal lpszSubKey As String, _

 ByVal dwReserved As Long, ByVal samDesired As Long, phkResult As Long) As Long

Declare Function RegQueryValueExA Lib "Advapi32" (ByVal hkey As Long, ByVal lpszValueName As String, _

 lpwReserved As Long, lpdwType As Long, ByVal lpbData As String, lpcbData As Long) As Long

Declare Function RegCloseKey Lib "Advapi32" (ByVal hkey As Long) As Long

Sub Win95SerialNumber()

 Dim hkey As Long

 Dim Buffer As String

 Dim lgBuf As Long

 If RegOpenKeyExA(&H80000002, "Software\Microsoft\Windows" & "\CurrentVersion", 0, &H960277, hkey) Then Exit Sub

 RegQueryValueExA hkey, "ProductId", 0, 1, Buffer, lgBuf

 Buffer = Space(lgBuf)

 If RegQueryValueExA(hkey, "ProductId", 0, 1, Buffer, lgBuf) = 0 Then MsgBox "Serial number = " & Buffer

 RegCloseKey hkey

End Sub

By Mark Lundberg

The following procedure is a workaround to the lack of a straightforward programmatic way to turn off the 'Break on Unhandled Errors in Class Module' option in the VBE.

Sub AClassCanBeAPainInThe()

 Application.SendKeys "%{F11}%TO+{TAB}{RIGHT 2}%E~%{F4}"

End Sub

POWER PROGRAMMING TECHNIQUES

Created by Laurent Longre

This example shows how to register functions into user-defined categories and provide descriptions for their arguments. The Auto_Open procedure registers the two functions, Multiply and Divide in two categories Multiplication and Division and provides descriptions of the input parameters.

Const Lib = """c:\windows\system\user32.dll"""

Option Base 1

Private Function Multiply(N1 As Double, N2 As Double) As Double

 Multiply = N1 * N2

End Function

Private Function Divide(N1 As Double, N2 As Double) As Double

 Divide = N1 / N2

End Function

Sub Auto_open()

 Register "DIVIDE", 3, "Numerator,Divisor", 1, "Division", "Divides two numbers", """Numerator"",""Divisor """, "CharPrevA"

 Register "MULTIPLY", 3, "Number1,Number2", 1, "Multiplication", "Multiplies two numbers", """First number"",""Second number """, "CharNextA"

End Sub

Sub Register(FunctionName As String, NbArgs As Integer, Args As String, MacroType As Integer, Category As String, Descr As String, DescrArgs As String, FLib As String)

 Application.ExecuteExcel4Macro "REGISTER(" & Lib & ",""" & FLib & """,""" & String(NbArgs, "P") & """,""" & FunctionName & """,""" & Args & """," & MacroType & ",""" & Category & """,,,""" & Descr & """," & DescrArgs & ")"

End Sub

Sub Auto_close()

 Dim FName, FLib

 Dim I As Integer

 FName = Array("DIVIDE", "MULTIPLY")

 FLib = Array("CharPrevA", "CharNextA")

 For I = 1 To 2

 With Application

 .ExecuteExcel4Macro "UNREGISTER(" & FName(I) & ")"

 .ExecuteExcel4Macro "REGISTER(" & Lib & _

 ",""CharPrevA"",""P"",""" & FName(I) & """,,0)"

 .ExecuteExcel4Macro "UNREGISTER(" & FName(I) & ")"

 End With

 Next

End Sub

Created by Bob Umlas and adaptation to a Function procedure by John Walkenbach

This procedure allows for the access of information in a closed workbook with VBA.

From Bob:

Here's a routine you can incorporate into your programs if you ever have a need to retrieve data from a file without opening it. In the needed case, I had to read any number of files (depending on user's selection from a listbox) and determine whether range W11:W36 on sheet "General" totalled zero and do one thing if ANY file met that condition or another thing if not. At first, I thought I'd need to open each file, take the sum, then close it again. Not true. By building a string which you can pass into the ExecuteExcel4Macro, you can access this info directly, without opening the file, making it very fast:

Sub GetDataFromClosedFile()

 filepath = "G:\fsoft\sos\data\ley"

 FileName = "1cA10.sos" '<==this could change in a loop

 sheetname = "General"

 Strg = "sum('" & filepath & "\[" & FileName & "]" & sheetname & "'!r11c23:r36c23)"

 MsgBox ExecuteExcel4Macro(Strg)

End Sub

'In reality, it looked like this:

Sub GetDataFromClosedFile()

 filepath = "G:\fsoft\sos\data\ley"

 sheetname = "General"

 For Each Fl In DialogSheets("DlgMulti").ListBoxes("MainList").List

 Strg = "sum('" & filepath & "\[" & Fl & "]" & sheetname & "'!r11c23:r36c23)"

 Ans = ExecuteExcel4Macro(Strg)

 If Ans > 0 Then Exit Sub

 Next

 'none > 0

 '...rest of code
End Sub

From John:

The GetValue function listed below takes four arguments:

path: The drive and path to the closed file (e.g., "d:\files")

file: The workbook name (e.g., "99budget.xls")

sheet: The worksheet name (e.g., "Sheet1")

ref: The cell reference (e.g., "C4")

Private Function GetValue(path, file, sheet, range_ref)

' Retrieves a value from a closed workbook

Dim arg As String

' Make sure the file exists

If Right(path, 1) <> "\" Then path = path & "\"

If Dir(path & file) = "" Then

GetValue = "File Not Found"

Exit Function

End If

' Create the argument

 arg = "'" & path & "[" & file & "]" & sheet & "'!" & Range(range_ref).Range("A1").Address(, , xlR1C1)

' Execute an XLM macro

 GetValue = ExecuteExcel4Macro(arg)

End Function

EXCEL 2000 INFORMATION

A workbook containing a hyperlink to a blank worksheet in the same workbook, when saved as a Web page and viewed in a Web browser, will do nothing when you click the hyperlink. Excel does not save blank pages by design when a workbook is saved as a web page to conserve disk space. You must add some text to the blank page prior to saving it in this way for the hyperlink to work. For more information on this, see:

http://support.microsoft.com/support/kb/articles/q221/0/64.asp

DID YOU KNOW?...

that aside from the new COM add-ins in Office 2000 and using complied xll/dll's, there is no good way to protect the code associated with applications built in Excel. There are password crackers/retrievers available that can hack the password from most if not all versions of Excel. However, there is a way to add a layer of protection to your password for a VB Project in Excel by using unprintable ASCII characters. The following list shows those characters that can be used:

Alt-0128, Alt-0129, Alt-0141, Alt-0142, Alt-0143, Alt-0144, Alt-0157, Alt-0158

There is no visual way to tell the difference among these characters, so a password of suitable length will provide additional protection. It is likely that code crackers can be made to display the corresponding ASCII code, but

at least it makes the password-breaking process a bit more difficult.

Issue No.9 OF EEE (PUBLISHED 15Jul1999)

Next issue scheduled for 04Aug1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 10th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st and 16th of each month.

TOP EXCEL WEB SITES

See www.beyondtechnology.com for some great Excel tips and a free Excel newsletter.

WORKSHEET FORMULA TIP

By George Simms

This array formula returns the sum of cells in the 3D range bounded by the sheets named in cells B2 and B3.

=SUM(N(INDIRECT(ROW(INDIRECT(B2&":"&B3))&"!A1")))

POWER FORMULA TECHNIQUE

By Alan Beban

Here is an example of how to solve a set of simultaneous equations using Excel. Start with equations that are linearly independent so that there is, in fact, a solution; e.g.,

17 = 5x + 3y + 2z

13 = 2x + 4y + z

22 = 3x + 2y + 5z

Put the coefficients of the unknowns in, e.g., A1:C3 (i.e., 5,3,2 in A1:C1, 2,4,1 in A2:C2, etc.);

Put the constants (17, 13, 22) in, e.g., D1:D3;

Highlight, e.g., E1:E3 and array enter (i.e., enter with Ctrl+Shift+Enter instead of just Enter)

=MMULT(MINVERSE(A1:C3,D1:D3)

and the solution vector (1,2,3) will appear in E1:E3; i.e., x=1, y=2, z=3

For a set of equations that does not have a solution, the #VALUE error will appear in E1:E3.

VBA CODE EXAMPLES

By Andrew Baker

Use this procedure to disable the Excel close button. Send in Me.Caption into either of the following routines. Make sure you do this on the initialise event for 'DisableActiveDialogMenuControls'

'-----------------------------Declarations to Remove Dialog Controls

Private Const MF_BYPOSITION As Long = &H400

''' Deletes the menus byposition (this is our default)

Private Const MF_BYCOMMAND As Long = &H0

''' Deletes the menu by Command ID. This is rarely used and is shown here for information purposes only.

Private Const mlNUM_SYS_MENU_ITEMS As Long = 9

''' This is the number of items on the system menu

Private Declare Function GetSystemMenu Lib "user32" (ByVal hWnd As Long,

ByVal bRevert As Long) As Long

Private Declare Function DeleteMenu Lib "user32" (ByVal hMenu As Long, ByVal

nPosition As Long, ByVal wFlags As Long) As Long

Private Declare Function FindWindowA Lib "user32" (ByVal lpClassName As

String, ByVal lpWindowName As String) As Long

' Comments: Deletes the system control menu of the specified window.

' Arguments: DialogCaption The caption of the window whose control menu you want to delete. If not specified, Application.Caption is assumed.

Public Sub DisableActiveDialogMenuControls(DialogCaption As String)

 Dim lHandle As Long, lCount As Long

 On Error Resume Next

 DialogCaption = DialogCaption & vbNullChar

 lHandle = FindWindowA(vbNullString, DialogCaption)

 ' Only continue if the passed window handle isn't zero.

 If lHandle <> 0 Then

 ' There are 9 items on the application control menu.

 ' Loop through and disable each one.

 For lCount = 1 To mlNUM_SYS_MENU_ITEMS

 ' The nPosition of the DeleteMenu function will always be 0, because as we delete each menu item, the next one moves up into the first position (index of 0).

 DeleteMenu GetSystemMenu(lHandle, False), 0, MF_BYPOSITION

 Next lCount

 End If

End Sub

' Comments: Restores the system control menu of the specified window.

' Arguments: szCaption (Optional) The caption of the window whose control menu you want to delete. If not specified, Application.Caption is assumed.

Public Sub EnableActiveDialogMenuControls(DialogCaption As String)

 Dim lHandle As Long

 On Error Resume Next

 DialogCaption = DialogCaption & vbNullChar

 lHandle = FindWindowA(vbNullString, DialogCaption)

 ' Passing True to the bRevert argument of the GetSystemMenu API restores

 ' the control menu of the specified window.

 GetSystemMenu lHandle, True

End Sub

By Robert Rosenburg

This routine clears only numbers from a selection (leaving the formulas & any cells containing text alone).

Sub ClearNumbersOnly()

 Dim iCalc As Integer

 Dim rngCell As Range

 On Error GoTo Error

 If LCase(TypeName(Selection)) = "range" Then

 iCalc = Application.Calculation

 Application.Calculation = xlCalculationManual

 For Each rngCell In Selection

 If Not rngCell.HasFormula Then If Application.IsNumber(rngCell) Then rngCell.ClearContents
 Next rngCell

 Application.Calculation = iCalc

 End If

Error:

Msgbox "Error in: ClearNumbersOnly"

End Sub

POWER PROGRAMMING TECHNIQUE

By David Hager

The goal is to create a protected worksheet where filtering and formatting can be done without unprotecting the worksheet. That can be accomplished by placing the following event procedure in the corresponding sheet module.

Public bFlag As Boolean

Private Sub Worksheet_Calculate()

 If bFlag Then Exit Sub

 On Error Resume Next

 With Application

.EnableEvents = False

.Undo

.EnableEvents = True

 End With

End Sub

Now, this procedure will prevent changes to cell contents as long as the Calculate event is triggered. This can be done by placing the following formula in cell A1.

=COUNTA(A2:A65536,B:IV)

If you try to drag and drop data to an area that already contains data, an Excel message prompt appears, but either way it is answered does not affect the protection of the data. If the formula in A1 is moved, circular reference messages appear, but again, the formula is not affected. These prompts and messages occur before any worksheet-based event, so there does not seem to be a way to prevent their appearance. This technique works especially well for sheets containing a list used as a flat database. The filtering of the list does not trigger the Calculate event.

You might want to have the option to update a worksheet protected in this way. This can be done by using the following procedure.

Sub ChangeTheSheet()

 bFlag = True

 ' some code here to change the worksheet

 bFlag = False

End Sub

By David Hager

There is a little-known effect for the display of charted data that can add considerable polish to a chart presentation. This applies to data ordered by either rows or columns. When records are arranged by rows, they can be hidden through filtering by using Data, Filter, AutoFilter. Columns of charted data can be hidden by using the Format, Column, Hide command. In either case, it turns out that the data that has been filtered or hidden no longer appears on the chart. This effect is quite useful for the viewing of data with a single chart, since what appears on the chart is controlled by the visible data on the worksheet. For example, you can have a chart with many data series and view them one at a time. Other descriptive fields or rows can be added to the data table that enhance to ability to

filter the data in different ways. Due to the options available for the manipulation of data in the data filtering process, this effect works best when the data is ordered in rows, assuming that the data set is not larger than the number of columns.

One drawback to using this technique for the display on information in a meeting is that changes to the source data would have to be done by toggling between the chart and worksheet holding the data. Fortunately, there is an

easy way to overcome this problem. The desired filter settings can be stored in custom views. Then, a listbox with those views can be added to the chart sheet. Since an ActiveX listbox cannot be used on a chart sheet, you will have to use the native Excel listbox that is available from the Forms toolbar. You can add the desired custom view names programatically or by linking it to a worksheet range. The following procedure will add all of the custom views in a workbook to the listbox. It contains a workaround for a problem in Excel that prevents a normal looping process for the Custom Views collection.
See:

http://support.microsoft.com/support/kb/articles/q164/0/21.asp for more details (this article may not currently be available at the Microsoft site).

Function CreateArrayAndAddToListBox()

 Dim TheArrayCount As Integer

 Dim ListArray()

 With ActiveWorkbook

.CustomViews.Add "Temp"

 TheArrayCount = .CustomViews.Count - 1

 ReDim Preserve ListArray(TheArrayCount)

 For n = 1 To TheArrayCount

 .CustomViews(n).Show

 ListArray(n) = .CustomViews(n).Name & " (" & ActiveSheet.Name & ")"

 Next

 For i = 1 To TheArrayCount

 For j = i + 1 To TheArrayCount

 If ListArray(i) > ListArray(j) Then

 tVar = ListArray(i)

 ListArray(i) = ListArray(j)

 ListArray(j) = tVar

 End If

 Next

 Next

.Sheets("TheChart").ListBoxes("lbShow").List = ListArray

 .CustomViews("Temp").Delete

 End With

End Function

Be aware that there are some problems in running code that shows a chart as a view. I experienced several system crashes, so try to avoid this scenario. It might be preferable to use the worksheet list link, since you can include

only the custom views you want for a given chart quite easily this way. Then, right-click on the listbox and assign the macro shown below to it.

Sub ChangeChartView()

 Application.ScreenUpdating = False

 ThisChart = ActiveSheet.Name

 With ActiveChart.ListBoxes("lbShow")

ActiveWorkbook.CustomViews(.List(.ListIndex)).Show

 End With

 Sheets(ThisChart).Activate

 Application.ScreenUpdating = True

End Sub

Then, by clicking on an item in the listbox, the custom view corresponding to the name of the item clicked will be shown. That will cause the filtering and/or the hiding of columns to be applied to the source data for the chart. That, in turn, will cause complete data points or complete data series to not appear on the chart. If you are using a legend on your chart, it will change to reflect only the data series currently appearing on the chart.

EXCEL 2000 TIP

Are you interested in the role XML plays in Excel 2000 file conversion and web data transmission? See: http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/officedev/offhtml9/shared/ofelexml.htm

DO YOU KNOW?...

the steps for making an Office 2000 COM add-in? Here is Stephen Bullen's guide through that process.

Using MOD 2000:

1. Open FP (one instance)

2. switch to the VBE

3. Add a new addin project

Using VB6:

1. Start VB6, electing to create a new COM Addin

2. Do nothing
3. Do nothing

Both:

4. Add a normal module, containing:

Public oFP As FrontPage.Application

Public oEvents As New CEvents

5. Add a class module called CEvents, containing:

Public WithEvents oBtn As CommandBarButton

Private Sub oBtn_Click(ByVal Ctrl As Office.CommandBarButton, CancelDefault As Boolean)

MsgBox "Clicked in " & oFP.ActiveWebWindow.Caption

End Sub

6. Add code to the Designer's code module:

Private Sub AddinInstance_OnConnection(ByVal Application As Object, ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, ByVal AddInInst As Object, custom() As Variant)

Dim oBar As CommandBar, oBtn As CommandBarButton

Set oFP = Application

Set oBar = oFP.CommandBars("Menu Bar")

RemoveMenu

Set oBtn = oBar.Controls.Add(msoControlButton)

With oBtn

 .Caption = "Test"

 .Tag = "FPT"

 .Style = msoButtonCaption

End With

Set oEvents.oBtn = oBtn

End Sub

Private Sub AddinInstance_OnDisconnection(ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode, custom() As Variant)

RemoveMenu

End Sub

Private Sub RemoveMenu()

Dim oCtls As CommandBarControls, oCtl As CommandBarControl

Set oCtls = oFP.CommandBars.FindControls(Tag:="FPT")

If Not oCtls Is Nothing Then

 For Each oCtl In oCtls

 oCtl.Delete

 Next

End If

End Sub

7. Compile it into a DLL

8. Close the project / Addin

9. Swtich to / open FrontPage 2000

10. Click on Tools, Addins to start the addin

11. Click on the "Test" menu item added to the menu bar - see the message

12. Start another instance of FrontPage

13. Click on the "Test" menu item added to the menu bar - see the message

14. Use File/Open to open a new FP web

15. Click on the "Test" menu item added to the menu bar - see the message

Issue No.10 OF EEE (PUBLISHED 31Jul1999)

Next issue scheduled for 15Aug1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 11th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st and 16th of each month. This publication resumes its normal schedule after 6 weeks of inactivity. I appreciate all of the positive comments I received during this time off.

TOP EXCEL WEB SITES

Here is a list of web sites for products that will find/remove passwords from Excel workbooks/projects/worksheets. This list was compiled by Tom Ogilvy.

http://www.accessdata.com

http://www.crak.com

http://www.lostpassword.com

http://www.elkraft.unit.no/~huse/xlpassword.htm

http://www.elkraft.ntnu.no/~huse/xlpassword.htm

http://www.elcomsoft.com/ae97pr.html

http://home.telia.no/exceltips/

http://www.zuarin.de/sec_eng.htm

http://webdon.com/mso/

services:

http://www.pwcrack.com/

http://www.passwordservice.com/crack.html

WORKSHEET FORMULA TIP

by Bob Umlas

This array formula is an example of a case-sensitive MATCH function.

=MATCH(TRUE,EXACT("A",MyRange),0)

by George Simms

This array formula will extract the phone number as text in the form of 123-45678 from examples as shown below.

234-5678PG

Result 234-5678

Array enter the formula and copy it down as far as needed for entries in column A.

=MID(A1,MATCH(FALSE,ISERROR(1*MID(A1,ROW(INDIRECT("1:20")),1)),0),21-

SUM(1*ISERROR(1*MID(A1,ROW(INDIRECT("1:20")),1))))

POWER FORMULA TECHNIQUE

by Stephen Bullen

This formula perform 'bankers rounding' for a number (Num) to a given number (Plc) of significant digits.
=MROUND(Num,IF(VALUE(RIGHT(Num/10^(INT(LOG(ABS(Num)))-Plc+1),2))=0.5,2,1)*

SIGN(Num)*10^(INT(LOG(ABS(Num)))-Plc+1))

If you define 'Fact' as =10^(INT(LOG(ABS(Num)))-Plc+1), this reduces to:

=MROUND(Num,IF(VALUE(RIGHT(Num/Fact,2))=0.5,2,1)*SIGN(Num)*Fact)

VBA CODE EXAMPLES

by Jim Rech (and others)

This procedure selects the last used cell in a worksheet.

Sub GotoLast()

 On Error Resume Next

 Application.ScreenUpdating = False

 Cells(Cells.Find("*", Range("A1"), , , xlByRows, xlPrevious).Row, _

 Cells.Find("*", Range("A1"), , , xlByColumns, xlPrevious).Column).Select

 If Err.Number <> 0 Then MsgBox "No data in sheet"

 Application.ScreenUpdating = True

End Sub

by Stephen Bullen

This function returns the dimension order of an array (up to 4D).

Public Function fnGetDimension(vaArray)

 Dim i As Integer, l As Long

 On Error Resume Next

 Err.Clear

 For i = 1 To 4

 l = UBound(vaArray, i)

 If Err.Number <> 0 Then Exit For

 fnGetDimension = i

 Next

 Err.Clear

End Function

by John Green

This procedure brings data into a worksheet from an external source using ADO. Note that use of the Transpose function will introduce array size limitations in versions of Excel previous to Excel 2000.

Sub GetDataWithADOIn97()

 Dim cnt As New ADODB.Connection

 Dim rst As New ADODB.Recordset

 Dim ws As Worksheet

 Dim recArray As Variant

 Dim fldCount As Integer

 Dim iCols As Integer

 Dim recCount As Long

 Set ws = ActiveSheet

 cnt.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=C:\My Documents\SalesDb.mdb;"

 rst.Open "Select * From SalesData", cnt

 fldCount = rst.Fields.Count

 For iCols = 0 To fldCount - 1

 ws.Cells(1, iCols + 1).Value = rst.Fields(iCols).Name

 Next

 'Copy records to array

 recArray = rst.GetRows

 recCount = UBound(recArray, 2)

 'Transpose array into worksheet

 ws.Range(ws.Cells(2, 1), ws.Cells(recCount + 1, fldCount)).Value = Application.Transpose(recArray)

End Sub

by John Walkenbach

This sub prints (in the Immediate window) the same list of files displayed by the Edit-Links menu command.

Sub ShowLinks()

 On Error Resume Next

 For Each Lnk In ActiveWorkbook.LinkSources(xlExcelLinks)

 Debug.Print Lnk

 Next Lnk

 For Each Lnk In ActiveWorkbook.LinkSources(xlOLELinks)

 Debug.Print Lnk

 Next Lnk

End Sub

by Rob Bovey

This simple procedure displays the chart wizard dialog box.

Sub ShowChartWizard()

 CommandBars("Standard").FindControl(,436).Execute

End Sub

by Jim Rech

Excel does not support automatically adjusting the row height of a merged cell with wrap text set. This procedure serves as a workaround.

Sub AutoFitMergedCellRowHeight()

 Dim CurrentRowHeight As Single, MergedCellRgWidth As Single

 Dim CurrCell As Range

 Dim ActiveCellWidth As Single, PossNewRowHeight As Single

 If ActiveCell.MergeCells Then

 With ActiveCell.MergeArea

 If .Rows.Count = 1 And .WrapText = True Then

 Application.ScreenUpdating = False

 CurrentRowHeight = .RowHeight

 ActiveCellWidth = ActiveCell.ColumnWidth

 For Each CurrCell In Selection

 MergedCellRgWidth = CurrCell.ColumnWidth + MergedCellRgWidth

 Next

 .MergeCells = False

 .Cells(1).ColumnWidth = MergedCellRgWidth

 .EntireRow.AutoFit

 PossNewRowHeight = .RowHeight

 .Cells(1).ColumnWidth = ActiveCellWidth

 .MergeCells = True

 .RowHeight = IIf(CurrentRowHeight > PossNewRowHeight, CurrentRowHeight, PossNewRowHeight)

 End If

 End With

 End If

End Sub

by Bernie Deitrick

This procedure returns the named ranges that include the active cell.

Sub DetermineRangeInclusion()

Dim myName As Name

Dim myAddress, myMessage As String

Dim InRange As Integer

myMessage = "Cell " & ActiveCell.Address & " is not in a Range"

InRange = 0

For Each myName In Application.Names

myAddress = myName.RefersTo

Set b = Intersect(ActiveCell, Range(myAddress))

If Not (b Is Nothing) Then

If InRange = 0 Then

InRange = 1

myMessage = "Cell " & b.Address & Chr(10) & Chr(13) & " is in " & myName.Name

Else: myMessage = myMessage & Chr(10) & Chr(13) & " and in " & myName.Name

End If

End If

Next myName

MsgBox myMessage

End Sub

by Jan Karel Pieterse

This procedure searches through all worksheets in a workbook.

Sub FindItAll()

 Dim oSheet As Object

 Dim Firstcell As Range

 Dim NextCell As Range

 Dim WhatToFind As Variant

 WhatToFind = Application.InputBox("What are you looking for ?", "Search", , 100, 100, , , 2)

 If WhatToFind <> "" And Not WhatToFind = False Then

 For Each oSheet In ActiveWorkbook.Worksheets

 oSheet.Activate

 oSheet.[a1].Activate

 Set Firstcell = Cells.Find(What:=WhatToFind, LookIn:=xlValues, LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext, MatchCase:=False)

 If Not Firstcell Is Nothing Then

 Firstcell.Activate

 MsgBox ("Found " & Chr(34) & WhatToFind & Chr(34) & " in " & oSheet.Name & "!" & Firstcell.Address)

 On Error Resume Next

 While (Not NextCell Is Nothing) And (Not NextCell.Address = Firstcell.Address)

 Set NextCell = Cells.FindNext(After:=ActiveCell)

 If Not NextCell.Address = Firstcell.Address Then

 NextCell.Activate

 MsgBox ("Found " & Chr(34) & WhatToFind & Chr(34) & " in " & oSheet.Name & "!" & NextCell.Address)

 End If

 Wend

 End If

 Set NextCell = Nothing

 Set Firstcell = Nothing

 Next oSheet

 End If

End Sub

EXCEL PRODUCTIVITY TIPS

by Rob Bovey

When the merge cells feature is used on a worksheet, it is difficult to make additional formatting changes to columns/rows that contain the merged cell(s).

The best workaround in this case is just not to use the merge cells feature. The old center across selection, which does the same thing for most purposes and causes no problems, is still available. It's just hidden under the

Format/Cells/Alignment menu at the bottom of the Horizontal dropdown.

by David Hager

There is a quicker way to freeze formulas to values on a worksheet than using Edit Copy, then Edit Paste Special and choosing the Values option. After making a selection, right-click its edge and drag it away slightly.

Then, place it back in its original position. When you do that, a popup menu appears. Select the Copy Here as Values option and you are finished.

DO YOU KNOW?...

that if you apply the Protect method with the UserInterfaceOnly argument set to True to a worksheet and then save the workbook, the entire worksheet (not just the interface) will be fully protected when you reopen the workbook.

To unprotect the worksheet but re-enable user interface protection after the workbook is opened, you must again apply the Protect method with UserInterfaceOnly set to True.

discoverd by Vasant Nanavati in online help

Issue No.11 OF EEE (PUBLISHED 15Sep1999)

Next issue scheduled for 01Oct1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 12th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st and 16th of each month. See:

TOP EXCEL WEB SITES

Lots of useful information at David McRitchie's web site.

http://members.aol.com/dmcritchie/excel/excel.htm

POWER FORMULA TECHNIQUE

by David Hager

Give a range of values (in this case B1:D3), find the maximum value and return the corresponding character in the adjacent column (in this case A1:A3). For the example shown below the answer is "z".

x
1
4
7

y
2
5
8

z
3
6
9

The following array formula will return the desired result.

=INDEX(A1:A3,MAX((B1:D3=MAX(B1:D3))*ROW(A1:A3)))

VBA CODE EXAMPLES

by David Hager

This procedure works in a similar manner to the Edit Fill Across Worksheets command in that it operates on a selection and the selected sheets, but formulas in the selection containing relative references are filled in a

sheet-relative manner.

Sub FillSpecial()

 Msg = "Do you want to add the sheet name to all references in your selection ?"

 Style = vbYesNo + vbDefaultButton2

 Title = "Add Sheet Name?"

 Response = MsgBox(Msg, Style, Title)

 If Response = vbYes Then

 Application.StatusBar = "Converting references..."

 Add_Sheet_Name_to_Formulas

 End If

 On Error GoTo EOP

 Application.StatusBar = "Starting fill special..."

 Application.ScreenUpdating = False

 Application.DisplayAlerts = False

 Dim SheetPosNum As Integer

 Dim SSPNum As Integer

 Dim wbrray()

 Dim ssrray()

 Dim m As Integer

 Dim n As Integer

 Dim y As Integer

 Dim z As Integer

 Dim sscount As Integer

 Dim CurSheet As String

 Dim ASName As String

 Dim RSName As String

 Dim errval As Variant

 ReDim wbrray(1 To ActiveWorkbook.Sheets.Count)

 ReDim ssrray(1 To Windows(1).SelectedSheets.Count)

 If Windows(1).SelectedSheets.Count = 1 Then

 Application.StatusBar = False

 Exit Sub

 End If

 n = 1

 For Each s In ActiveWorkbook.Sheets

 RSName = Application.Substitute(s.Name, " ", "")

 RTName = Application.Substitute(RSName, "(", "")

 RUName = Application.Substitute(RTName, ")", "")

 If s.Name <> RUName Then

 Msga = "The sheetname [" & s.Name & "] needs to be " & _

 "modified to workwith formulas. Is it OK?"

 Stylea = vbYesNo + vbDefaultButton1

 Titlea = "Change Sheet Name?"

 Responsea = MsgBox(Msga, Stylea, Titlea)

 If Responsea = vbYes Then

 Sheets(s.Name).Name = RUName

 wbrray(n) = RUName

 End If

 Else

 wbrray(n) = s.Name

 End If

 n = n + 1

 Next

 sscount = Windows(1).SelectedSheets.Count

 Application.StatusBar = "0 of " & sscount & " worksheets finished."

 ASName = ActiveSheet.Name

 SheetPosNum = Application.Match(ASName, wbrray, 0)

 ActiveWindow.SelectedSheets.FillAcrossSheets Range:=Selection, Type:=xlContents

 m = 1

 For Each s In Windows(1).SelectedSheets

 ssrray(m) = s.Name

 m = m + 1

 Next

 ActiveSheet.Select

 For t = 1 To sscount

 Application.StatusBar = t & " of " & sscount & " worksheets finished."

 CurSheet = Application.Index(ssrray, t)

 Worksheets(CurSheet).Activate

 SSPNum = Application.Match(ssrray(t), wbrray, 0)

 y = ActiveWorkbook.Sheets.Count

 Selection.Replace What:="=", Replacement:="(/)", LookAt:= xlPart, SearchOrder:=xlByRows, MatchCase:=False

 For Each r In wbrray

 Selection.Replace What:=wbrray(y), Replacement:="ZZZ00" & y, LookAt:= xlPart, SearchOrder:=xlByRows, MatchCase:=False

 y = y - 1

 Next

 z = ActiveWorkbook.Sheets.Count

 For Each q In wbrray

 Selection.Replace What:="ZZZ00" & z + SheetPosNum - SSPNum, Replacement:=wbrray(z), LookAt:= xlPart, SearchOrder:=xlByRows, MatchCase:=False

 z = z - 1

 Next

 Selection.Replace What:="(/)", Replacement:="=", LookAt:= xlPart, SearchOrder:=xlByRows, MatchCase:=False

 For Each CurCell In Selection

 If IsError(CurCell) Then

 errval = CurCell.Value

 Select Case errval

 Case CVErr(xlErrName)

 CurCell.Formula = ""

 Case CVErr(xlErrRef)

 CurCell.Formula = ""

 End Select

 End If

 Next

 Next

 Worksheets(SheetPosNum).Activate

 Application.StatusBar = False

 Exit Sub

EOP:

 MsgBox "Illegal formula reference attempted. Examine all " & "filled formulas and try again."

 Worksheets(SheetPosNum).Activate

 Application.StatusBar = False

End Sub

Sub Add_Sheet_Name_to_Formulas()

 Dim CurrentSheet As String

 On Error GoTo EOSH

 CurrentSheet = ActiveSheet.Name

 Application.ReferenceStyle = xlR1C1

 Application.ScreenUpdating = False

 With Selection

 .Replace What:="RA", Replacement:="ARZZ"

 .Replace What:="RE", Replacement:="ERZZ"

 .Replace What:="RI", Replacement:="IRZZ"

 .Replace What:="RO", Replacement:="ORZZ"

 .Replace What:="+R", Replacement:="+" & CurrentSheet & "!R"

 .Replace What:="-R", Replacement:="-" & CurrentSheet & "!R"

 .Replace What:="(R", Replacement:="(" & CurrentSheet & "!R"

 .Replace What:=",R", Replacement:="," & CurrentSheet & "!R"

 .Replace What:="/R", Replacement:="/" & CurrentSheet & "!R"

 .Replace What:="~*R", Replacement:="*" & CurrentSheet & "!R"

 .Replace What:="=R", Replacement:="=" & CurrentSheet & "!R"

 .Replace What:=" R", Replacement:=" " & CurrentSheet & "!R"

 .Replace What:="^R", Replacement:="^" & CurrentSheet & "!R"

 .Replace What:="&R", Replacement:="&" & CurrentSheet & "!R"

 .Replace What:="(C[", Replacement:="(" & CurrentSheet & "!C["

 .Replace What:=" C[", Replacement:=" " & CurrentSheet & "!C["

 .Replace What:="=C[", Replacement:="=" & CurrentSheet & "!C["

 .Replace What:="~*C[", Replacement:="*" & CurrentSheet & "!C["

 .Replace What:="/C[", Replacement:="/" & CurrentSheet & "!C["

 .Replace What:="ORZZ", Replacement:="RO"

 .Replace What:="IRZZ", Replacement:="RI"

 .Replace What:="ERZZ", Replacement:="RE"

 .Replace What:="ARZZ", Replacement:="RA"

 End With

 Application.ReferenceStyle = xlA1

 Exit Sub

EOSH:

 MsgBox "Not all references may have converted correctly."

 Application.ReferenceStyle = xlA1

End Sub

by Dana DeLouis

This procedure converts normal formulas to those that show an empty cell

if an error condition exists in the original formula.

Sub ErrorTrapAddDDL()

' Adds =If(IsError() around formulas

 Dim cel As Range

 Dim rng As Range

 Dim Check As String

 Const Equ As String = "=IF(ISERROR(_x) ,"""", _x)"

 Check = Left$(Equ, 12) & "*" ' Check for =IF(ISERROR(

 On Error Resume Next

 Set rng = Selection.SpecialCells(xlFormulas, 23)

 If rng Is Nothing Then Exit Sub

 With WorksheetFunction

 For Each cel In rng

 If Not cel.Formula Like Check Then cel.Formula = .Substitute(Equ, "_x", Mid$(cel.Formula, 2))

 Next

 End With

End Sub

DO YOU KNOW?...

that you can use defined names in a workbook that are defined in another workbook. For example, if TheValue is defined as 4 in BookB.xls, typing =BookB.xls!TheValue in a cell in another workbook will return the value 4.

However, the workbook containing the defined name formua must be open for this to work. This is NOT true for defined name ranges. These can be used to communicate with CLOSED workbooks! So, for example, if TheRange is defined as Sheet1!A1:A3 in BookB.xls, typing =SUM(BookB.xls!TheRange) in a cell in another workbook will return the value 17 (if that range contains the values 1,2 and 14). When the workbook containing the defined name range is closed, the full path of BookB.xls will be shown in the formula. Recalculation of that formula continues to return the value 17. Unfortunately, the range cannot be defined with the OFFSET function as an expanding range, such as:

=OFFSET(Sheet1!A1,,,COUNTA(Sheet1!$A:$A),)

since this fits into the category of defined name formulas described earlier which do not work with closed workbooks. However, it works fine when the workbook is open.

An important sidenote to the use of defined names is the transport of defined names to another workbook. If you type =MyIncrediblyComplexDFFormula in a cell in the same workbook it is defined in, then copy/paste that cell to

another workbook, the defined name formula associated with that formula (along with any dependent defined name formulas) will be copied to that workbook as well. This is true even if the workbook and worksheet is completely protected. A method of preventing this from occurring is the attachment of an xlm function of your choosing to the formula (perhaps one that always returns 0). Since xlm functions cannot be used directly on a worksheet, the destination workbook will not accept the paste operation.

Issue No.12 OF EEE (PUBLISHED 01Oct1999)

Next issue scheduled for 16Oct1999.

BY David Hager

dchager@compuserve.com

Excel Magic Consolidator(MagicCons.xls)

by David Hager

Copyright @1999 All Rights Reserved

Feel free to use this technique in your Excel projects, as long as you include a statement as to the original source.

There are no examples of the formulas referred to in this text in the working xl file, but you should be able to construct your own, based on the following information.

1) Basic Instructions

 a) What does it do?

It allows the user to write formulas on the consolidation worksheet (called "Summary" by default) that act on the same cell from every worksheet in the workbook. The results of the formulas change dynamically as sheets are

added/deleted from the workbook. Also, the summary sheet can be located at any position within the workbook. There is no VBA or xlm macro code used in this solution. All of the work is done by defined name formulas.

 b) Writing the formulas

As an example, if you type the formula =SUM(cCell) in cell B4 on the Summary worksheet, that formula will return the sum of cell B4 for every worksheet in the workbook, since cCell as used in cell B4 returns the array of entries for those worksheets. Information about using arrays that return entries from cells offset from the cells they are used in can be found in 2a.

 c) Changing the consolidation sheet name

To change the consolidation sheet name, go to Insert, Name, Define in the menu. The named formula called TheSummarySheetName is defined as ="Summary". This means that the worksheet named "Summary" is the only sheet in the workbook that can be used with the consolidation formulas. If, for example, you want change the name to "ConsSheet", then you need to define TheSummarySheetName as ="ConsSheet". Of course, you must have a worksheet by that name as well.

 d) Exporting to an existing workbook

To export this functionality to another workbook, you need to use the Move or Copy menu item from the popup menu that is available when you right-click a worksheet tab. In this case, right-click the Summary tab (or whatever

name you may have changed it to). Then, select the desired workbook and sheet location from the dialog box and the checkbox named "Create a copy" and press Enter. All of the defined name formulas will copy over to the new workbook (and of course it is not necessary for your workbook to be named MagicCons.xls). Note that a new workbook must first be saved for this technique to work.

2) How does it work?

 a) Understanding the formulas

All of the formulas used to create the consolidation are defined name formulas. You can view them by selecting Insert, Name, Define from the menu. Do not change these formulas unless you understand how they work. There are 4 constants defined for use in the z-relative formulas. By default, the defined name formulas down, left, right and up have been assigned a value of 1.

TheSummarySheetName is defined as: ="Summary"

This is a defined name formula that sets the name of the worksheet to be used as the consolidation worksheet.

ThisSheet is defined as:

=LEFT(GET.DOCUMENT(1),FIND("]",GET.DOCUMENT(1)))&TheSummarySheetName

This formula returns the sheet name of the consolidation worksheet in the form "[MagicCons.xls]Summary". This string will be different if used in another workbook and/or with a different consolidation worksheet. This string will be used to match the same string in the TheSheets formula.

TheSheets is defined as: =IF(GET.WORKBOOK(1)=ThisSheet,"",GET.WORKBOOK(1))

The GET.WORKBOOK(1) xlm macro function returns an array of names for the worksheets in the workbook. This formula modifies that array to return an array with an empty string for the array item corresponding to the

consolidation worksheet. NOTE: You can modify this formula to exclude worksheets other than the "Summary" sheet (if you know how).

cCell is defined as:

=IF(ISERROR(N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN())))),"",

N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN()))))

The concatenated string in the formula INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN())) creates an array of cell addresses for the cell in which the formula resides all of the worksheets in the workbook. The worksheet cell address for the position on the consolidation worksheet is constructed incorrectly by design so that a circular reference to that cell will not be created. When that string is acted on by the INDIRECT function, a 3-D or

z-range is created. Due to a glitch in how Excel returns this array, it must be acted on by the N function to produce a true array.

cCellDown is defined as:

=IF(ISERROR(N(INDIRECT(TheSheets&"!"&ADDRESS(ROW()+down,COLUMN())))),"",

N(INDIRECT(TheSheets&"!"&ADDRESS(ROW()+down,COLUMN()))))

cCellLeft is defined as:

=IF(ISERROR(N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN()-left)))),"",

N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN()-left))))

cCellRight is defined as:

=IF(ISERROR(N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN()+right)))),"",

N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN()+right))))

cCellUp is defined as:

=IF(ISERROR(N(INDIRECT(TheSheets&"!"&ADDRESS(ROW()-up,COLUMN())))),"",

N(INDIRECT(TheSheets&"!"&ADDRESS(ROW()-up,COLUMN()))))

Realize that in order to use offset arrays of differing dimensions, you will have to define you own hard-coded formulas, such as:

cCellUp4 is defined as:

=IF(ISERROR(N(INDIRECT(TheSheets&"!"&ADDRESS(ROW()-4,COLUMN())))),"",

N(INDIRECT(TheSheets&"!"&ADDRESS(ROW()-4,COLUMN()))))

 b) Using arrays with "non-3D enabled" Excel functions

There are quite a few Excel functions that do not work with the 3D ranges that are inherent to Excel. For example, the MATCH function cannot be as shown in the following formula.

=MATCH(2, Sheet1:Sheet7!C1, 0)

However, this formula does work as expected.

=MATCH(2, cCell, 0)

In the former case, the 3D range reference Sheet1:Sheet7!C1 does not give an array that the MATCH function can operate on. The latter case contains the readable array cCell (which can be viewed by evaluating that portion of the formula in the formula bar) that MATCH does work with.

 c) Z-relative array formulas

Since real arrays are returned by cCell and its cousins, they can be used just like any normal range is used in an array formula.

3) Problems

 a) Circular references

If you try to use the consolidation formulas on any other worksheet than the designated consolidation sheet, a circular reference will be created. Do not use these formulas on other worksheets!

 b) Sheets other than worksheets

The presence of charts and Excel5 dialog sheets do not interfere with the workings of the consolidation formulas. However, an Excel4 macro sheet will behave as if was a regular worksheet. This should not cause a problem

in most cases, but if you have entries in cells that correspond to the cell ranges you have chosen for consolidation, they will be used in the formulas.

 c) "Incorrect" result from formulas

The z-relative arrays contain the same number of items as the number of worksheets in your workbook, and that includes the consolidation worksheet. As such, the COUNTA function will always return that number when used with the cCell (and similar) arrays. The value zero is returned from empty cells and so the COUNT function will count those cells. For the same reason, the SMALL, AVERAGE AND MIN functions may not return the expected answer. Thus, it is recommended that these functions not be used in the consolidation formulas, unless you are sure that each worksheet for a specified cell contains an entry.

 d) Only returns values

These formulas have been constructed to return only arrays of values. This was done by design, since consolidation is performed on numbers. All text entries are converted to zero. However, if you would prefer a solution that does include text entries in the arrays, follow these steps:

Define nCell as =N(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN())))

Define tCell as =T(INDIRECT(TheSheets&"!"&ADDRESS(ROW(),COLUMN())))

Define cCell as =IF(ISERROR(nCell),"",IF(tCell<>"",tCell,nCell))

Of course you would need to do this for the offset arrays as well. I leave that as an exercise to the reader.

COMMENTS

Welcome to the 14th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is a semi-monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st and 16th of each month. There will be periods when EEE is not published due to time and travel constraints.

TOP EXCEL WEB SITES

See:

http://www.appspro.com

for a group of great free Excel utilities that have finally found a home.

POWER FUNCTION TECHNIQUE

by Stephen Bullen and David Hager

These functions are modifications of an user-defined function made by Stephen Bullen and published in the Feb'99 issue of PC World magazine. All of these functions are primarily designed to be used as a condition for conditional formatting, as they are meant to be used with a single cell range. When used with multi-cell ranges, these functions will return True if the range argument intersects the filter range. Determining if the range argument is a subset of the filter range would require the comparison of the intersection of the range argument and the filter range to see if it was equal to the range argument.

Function InFilterList(Rng As Range) As Boolean

 On Error GoTo TheEnd

 InFilterList = False

 If Not Intersect(Rng, Rng.Parent.AutoFilter.Range) Is Nothing Then InFilterList = True

 Exit Function

TheEnd:

End Function

The InFilterList function returns True if the range in question is located in a filter range. This is the range where the Data, AutoFilter has been applied but no criteria has been chosen. The act of adding or removing the autofilter does not cause a recalculation of this function when it is used in a conditional formatting formula. Thus, a recalculation on the worksheet is needed for the conditional format to be applied.

Function InFilteredList(Rng As Range) As Boolean

 On Error GoTo TheEnd

 InFilteredList = False

 With Rng.Parent.AutoFilter

 If Not Intersect(Rng, .Range) Is Nothing Then

 For n = 1 To .Range.Columns.Count

 If .Filters(n).On Then

 InFilteredList = True

 Exit For

 End If

 Next

 End If

 End With

 Exit Function

TheEnd:

End Function

The InFilteredList function returns True if the range in question is located in a filtered range. Since the application of the filter is recognized by Excel as a change requiring a recalculation, this function will afford dynamic formatting changes to cells when used in conjunction with conditional formatting.

Function InFilteredField(Rng As Range) As Boolean

 On Error GoTo TheEnd

 InFilteredField = False

 With Rng.Parent.AutoFilter

 If Not Intersect(Rng, .Range) Is Nothing Then

 If .Filters(Rng.Column - .Range.Column + 1).On Then InFilteredField = True

 End If

 End With

 Exit Function

TheEnd:

End Function

The InFilteredField function returns True if the range in question is located in a column to which a filter has been applied. If the entire filter range has been conditionally formatted, all of the columns that have a set criteria will display the desired formatting.

VBA CODE EXAMPLES

by Stephen Bullen

This procedure delinks all of the charts in a workbook.

Sub RemoveChartLinks()

Dim oSht As Worksheet, oCht As ChartObject, oSeries As Series

'From all embedded charts

For Each oSht In ActiveWorkbook.Worksheets

 For Each oCht In oSht.ChartObjects

 For Each oSeries In oCht.Chart.SeriesCollection

 With oSeries

 .Name = .Name

 .Values = .Values

 .XValues = .XValues

 End With

 Next

 Next

Next

'From all chart sheets

For Each oCht In ActiveWorkbook.Charts

 For Each oSeries In oCht.SeriesCollection

 With oSeries

 .Name = .Name

 .Values = .Values

 .XValues = .XValues

 End With

 Next

Next

End Sub

by Jim Rech

This procedure opens an application through the use of the Shell function and it allows for the lag time involved with the opening process.

Declare Function OpenProcess Lib "kernel32" _

(ByVal dwDesiredAccess As Long, ByVal bInheritHandle As Long, ByVal dwProcessId As Long) As Long

Declare Function GetExitCodeProcess Lib "kernel32" (ByVal hProcess As Long, lpExitCode As Long) As Long

Public Const PROCESS_QUERY_INFORMATION = &H400

Public Const STILL_ACTIVE = &H103

Sub Test()

 Dim StartTime As Double

 StartTime = Now

 ShellAndWait "calc.exe", 1

 MsgBox "Gone " & Format(Now - StartTime, "s") & " seconds"

End Sub

'Window States (Per Help for Shell function):

' 1, 5, 9 Normal with focus.

' 2 Minimized with focus.

' 3 Maximized with focus.

' 4, 8 Normal without focus.

' 6, 7 Minimized without focus.

Sub ShellAndWait(ByVal PathName As String, Optional WindowState)

 Dim hProg As Long

 Dim hProcess As Long, ExitCode As Long

 'fill in the missing parameter and execute the program

 If IsMissing(WindowState) Then WindowState = 1

 hProg = Shell(PathName, WindowState)

 'hProg is a "process ID under Win32. To get the process handle:

 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, False, hProg)

 Do

 'populate Exitcode variable

 GetExitCodeProcess hProcess, ExitCode

 DoEvents

 Loop While ExitCode = STILL_ACTIVE

End Sub

by Jim Rech

This procedure removes all code and related structures from a workbook.

''Needs a reference to the VB Extensibility library set

'Removes from active workbook all:

 ''Regular modules

 ''Class modules

 ''Userforms

 ''Code in sheet and workbook modules

 ''Non built-in references

 ''Excel 4 macro sheets

 ''Dialog sheets

Sub RemoveAllCode()

 'XL2K:

 'Dim VBComp As VBComponent, AllComp As VBComponents, ThisProj As

 VBProject

 'XL97 & XL2K:

 Dim VBComp As Object, AllComp As Object, ThisProj As Object

 Dim ThisRef As Reference, WS As Worksheet, DLG As DialogSheet

 If ActiveWorkbook.Name <> ThisWorkbook.Name Then

 Set ThisProj = ActiveWorkbook.VBProject

 Set AllComp = ThisProj.VBComponents

 For Each VBComp In AllComp

 With VBComp

 Select Case .Type

 Case vbext_ct_StdModule, vbext_ct_ClassModule, vbext_ct_MSForm

 AllComp.Remove VBComp

 Case vbext_ct_Document

 .CodeModule.DeleteLines 1, .CodeModule.CountOfLines

 End Select

 End With

 Next

 For Each ThisRef In ThisProj.References

 If Not ThisRef.BuiltIn Then ThisProj.References.Remove ThisRef

 Next

 End If

 Application.DisplayAlerts = False

 For Each WS In Excel4MacroSheets

 WS.Delete

 Next

 For Each DLG In DialogSheets

 DLG.Delete

 Next

End Sub

POWER PROGRAMMING TECHNIQUES

by David Hager

Data normalization is a task that is commonly applied in a variety of data workups. When normalized, the sum of the data equals some value that is set by an arbitrary or real constraint. In Excel, the normalization process is accomplished with a column (or row) of formulas appropriate to the task. The following technique provides a way to convert data to a normalized form without the use of formulas.

Sub NormalizeRangeValues(Optional nRange As String, Optional nValue As Double = 1)

 If nRange = "" Then nRange = Selection.Address

 nSum = Application.WorksheetFunction.Sum(Range(nRange))

 If nSum = 0 Then Exit Sub

 For Each nCell In Range(nRange)

 With nCell

 If .Value <> "" Then .Value = (nValue / nSum) * .Value

 End With

 Next

End Sub

Sub NormalizeTableValues(tRange As String, _

 Optional nVal As Double = 1, Optional CoR As Boolean = True)

 Dim n As Integer

 If CoR Then

 CoR_Count = Range(tRange).Columns.Count

 Else

 CoR_Count = Range(tRange).Rows.Count

 End If

 For n = 1 To CoR_Count

 NormalizeRangeValues RangeSection(tRange, n, CoR), nVal

 Next

End Sub

Function RangeSection(tRange As String, _

 posNum As Integer, Optional ByCol As Boolean = True) As String

 Dim cOffset As Integer

 Dim rOffset As Integer

 Dim cSize As Integer

 Dim rSize As Integer

 cOffset = 0

 rOffset = 0

 cSize = 1

 rSize = 1

 Set mRange = Range(tRange)

 If ByCol Then

 cOffset = posNum - 1

 rSize = mRange.Rows.Count

 Else

 rOffset = posNum - 1

 cSize = mRange.Columns.Count

 End If

 Set sRange = mRange.Offset(rOffset, cOffset).Resize(rSize, cSize)

 RangeSection = sRange.Address

End Function

Apart from its use with the normalization technique, the RangeSection function can be useful for returning the address of a row or column within a specified range. The function is constructed to return a string, but it can just as easily be made to return a Range object.

Sub RunNormalizeTable()

 Application.EnableEvents = False

 NormalizeTableValues Selection.Address, 2.5, False

 Application.EnableEvents = False

End Sub

The procedure shown above will normalize the data in all of the rows in a selected data table to a value of 2.5. When writing a procedure that incorporates a general utility macro, it is a good idea to disable/enable events in that procedure if it triggers an event that is not inherent to the function of that utility. In the case of using the NormalizeRangeValues function, the cell values are changed, so that will start any application, workbook or worksheet level change event for each cell changed. If those event procedures contain code, that code will run with each change, which may not be the desired outcome.

by David Hager

The following event procedures work together to place the contents of a cell into a cell comment when another entry is made. For example, if a cell contains a value of 13, and 23 is entered in the cell, the cell comment will

contain the statement:

"Previous entry was 13"

Public acVal

Private Sub Worksheet_Change(ByVal Target As Excel.Range)

 On Error Resume Next

 Target.AddComment

 Target.Comment.Text "Previous entry was " & acVal

End Sub

Private Sub Worksheet_SelectionChange(ByVal Target As Excel.Range)

 If ActiveCell.Address <> Target.Address Then Exit Sub

 acVal = Iif(Target.Value = "", "", Target.Value)
End Sub

The cell value is stored in a public variable when a cell is selected. Then, when a new value is added, the Worksheet_Change event procedure adds a cell comment (the error generated if the cell already has a comment is stepped over) and then uses the stored variable as part of the text string for the comment. This technique could be easily modified to add all of the changes made to a cell over time to the comment.

Issue No.14 OF EEE (PUBLISHED 01Nov1999)

Next issue scheduled for 16Nov1999.

BY David Hager

dchager@compuserve.com

COMMENTS

Y2K is nearly here!

Welcome to the 15th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is now a monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st of each month. There will be periods when EEE is not published due to time and travel constraints.

TOP EXCEL WEB SITES

See Ole P.'s web site for lots of great Excel stuff.

http://w1.2735.telia.com/~u273500023/english/index.htm

Go to Aaron Blood's growing Excel site at:

http://geocities.com/aaronblood

WORKSHEET FORMULA TIP

by Harlan Grove

??? formula to reverse the sequence of elements in a range ???

This method makes use of matrix multiplication. The idea is pre or post multiply by a square matrix (N by N)of ones in the elements where the sum of the row and column indices equal N+1 and zeros elsewhere, eg, for 3 by 3

0 0 1

0 1 0

1 0 0

Call these matrices R(N), where N is the dimension (N by N), then for A a matrix with 4 rows and 3 columns, the matrix product R(4) * A reverses the row order of A while A * R(3) reverses the column order of A.

So if A is

11 12 13

21 22 23

31 32 33

41 42 43

then the array formulas

=MMULT(N(ROW(INDIRECT("1:"&ROWS(A)))=TRANSPOSE(

ROWS(A)+1-ROW(INDIRECT("1:"&ROWS(A))))),A)

and

=MMULT(A,N(ROW(INDIRECT("1:"&COLUMNS(A)))=TRANSPOSE

(COLUMNS(A)+1-ROW(INDIRECT("1:"&COLUMNS(A))))))

give

41 42 43

31 32 33

21 22 23

11 12 13

and

13 12 11

23 22 21

33 32 31

43 42 41

respectively.

POWER FORMULA TECHNIQUE

by Bob Umlas

This array formula returns TRUE if the number in cell A1 is a prime number.

=OR(A1=2,A1=3,ISNA(MATCH(TRUE,A1/ROW(INDIRECT("2:"&INT(SQRT(A1))))=

INT(A1/ROW(INDIRECT("2:"&INT(SQRT(A1))))),0)))

Use it as a conditional formatting formula, with A1 as the active cell in the selection to be formatted.

Here's how Bob's amazing formula works. In a nutshell, the number is divided by all potential prime factors, and the resulting array is tested to see whether it contains a whole number. If is does, you have a prime number. A limitation of this formula is that it cannot test numbers that are greater than 65535^2. This is due to the array size constraint in Excel 97/2000.

VBA CODE EXAMPLES

by Jake Marx

??? read the names of all Sheets in a closed workbook ???

Here's a way to do it through ADO (ActiveX Data Objects) in Excel 2000. To use this code, you must first set a reference to "Microsoft ActiveX Data Objects 2.1 Library" and "Microsoft ADO Ext. 2.1 for DDL and Security".

 Sub ReadSheetNames(TheCompleteFilePath As String)

 Dim cnn As New ADODB.Connection

 Dim cat As New ADOX.Catalog

 Dim tbl As ADOX.Table

 cnn.Open "Provider=MSDASQL.1;Data Source=" & "Excel Files;Initial Catalog=" & TheCompleteFilePath

 cat.ActiveConnection = cnn

 For Each tbl In cat.Tables

 MsgBox Left$(tbl.Name, Len(tbl.Name) - 1)

 Next tbl

 Set cat = Nothing

 cnn.Close

 Set cnn = Nothing

 End Sub

by Bill Manville

??? synchronise the horizontal scrolling of 2 windows onto the same worksheet ???

Place this event procedure in the worksheet module.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Dim W As Window

Dim stCap as String

stCap = ActiveWindow.Caption

Application.ScreenUpdating = False

If Right(stCap, 2) = ":1" Then

 Set W = Windows(Left(stCap, Len(stCap) - 2) & ":2")

ElseIf Right(stCap, 2) = ":2" Then

 Set W = Windows(Left(stCap, Len(stCap) - 2) & ":1")

Else

 Exit Sub ' single window.

End If

W.ScrollColumn = ActiveWindow.ScrollColumn

Application.ScreenUpdating = True

End Sub

by Bill Manville

??? group multiple worksheets and print a selection from the selected sheets all on one page ???

Sub MultiSheetPrint()

' prints the selected area on each of a set of selected worksheets on a single sheet

 Dim oActive As Object

 Dim oSheet As Object

 Dim oSheets As Object

 Dim wsPrint As Worksheet

 Dim oLastPic As Object

 Dim iPics As Integer

 ' remember where we are

 Set oSheets = ActiveWindow.SelectedSheets

 If oSheets.Count = 1 Then

 Selection.PrintOut preview:=True

 Exit Sub

 End If

 Set oActive = ActiveSheet

 Application.ScreenUpdating = False

 oActive.Select ' otherwise we get lots of new sheets

 Set wsPrint = Worksheets.Add

 For Each oSheet In oSheets

 If TypeName(oSheet) = "Worksheet" Then

 iPics = iPics + 1

 oSheet.Activate

 Selection.CopyPicture

 wsPrint.Cells(iPics * 3 - 2, 1).Value = oSheet.Name

 wsPrint.Paste wsPrint.Cells(iPics * 3 - 1, 1)

 wsPrint.Rows(iPics * 3 - 1).RowHeight = _

 wsPrint.Pictures(iPics).Height

 End If

 Next

 wsPrint.PrintOut preview:=True

 Application.DisplayAlerts = False

 wsPrint.Delete

 Application.DisplayAlerts = True

 oSheets.Select

 oActive.Activate

 Application.ScreenUpdating = True

End Sub

POWER FUNCTION TECHNIQUES

by Harlan Grove

This function evaluates first argument, v, and return replacement value, rep, depending on comparison given by cmp. If cmp is blank, replace all error values in v with rep. Otherwise, use Evaluate() with v and cmp, and if the result is True, then replace v with rep.

Function EvalReplace(v As Variant, Optional cmp As String = "", Optional rep As Variant = "") As Variant

 Dim i As Long, j As Long, ret() As Variant, x As Variant

 If TypeOf v Is Range Then v = v.Value

 If Not IsArray(v) Then v = Array(v)

 On Error Resume Next

 j = UBound(v, 2) - LBound(v, 2) + 1

 On Error GoTo 0

 If j = 0 Then

 ReDim ret(1 To 1, 1 To UBound(v, 1) - LBound(v, 1) + 1)

 Else

 ReDim ret(1 To UBound(v, 1) - LBound(v, 1) + 1, 1 To j)

 End If

 i = 1

 j = 1

 For Each x In v

 If cmp = "" Then

 If IsError(x) Then ret(i, j) = rep

 ElseIf Not IsError(x) Then

 If Evaluate("=" & x & cmp) Then ret(i, j) = rep

 End If

 If IsEmpty(ret(i, j)) Then ret(i, j) = x

 If i < UBound(ret, 1) Then

 i = i + 1

 Else

 i = 1

 j = j + 1

 End If

 Next

 EvalReplace = ret

End Function

This function is more efficient at replacing error values than it is at comparison replacements. Nevertheless, when the expression v is complex, this can be preferable to using v twice in IF().

Examples:

=EvalReplace(SQRT(-1)) returns a zero-length string

=EvalReplace(SQRT(-1),,0) returns 0

=EvalReplace({1,2,3,4},"<2",2) returns {2,2,3,4}

POWER PROGRAMMING TECHNIQUES

by Stephen Bullen

??? assign a procedure to the Click event of a command button added to a form at run time ???

[Class CBtnEvents]

Public WithEvents oBtn As MSForms.CommandButton

Private Sub oBtn_Click()

'... Your code

End Sub

[In the Form]

Dim oEvents As New Collection

Private Sub Userform_Initialize()

Dim oBtnEvts As CBtnEvents

Set oBtnEvts = New CBtnEvents

Set oBtnEvts.oBtn = FrmFieldShow.Controls.Add(bstrprogid:="forms.commandbutton.1", Name:="CmdToG", Visible:=True)

 With oBtnEvts.oBtn

 .Top = 50

 .Height = 25

 .Width = 100

 .Left = (FrmFieldShow.Width / 2 - (100 / 2))

 .Caption = "Ok"

 End with

oEvents.Add oBtnEvts

End Sub

When you click the button, the routine in the class module will fire.

by Laurent Longre

??? add a Add-In path dynamically while it's loading, so the path can be adjusted according to the location of other applications ???

Since the calls to the XLA functions create a link to the XLA file in question, you can test if the path of the add-in is not the same as the path of the link. You should test this in all the workbooks which are already open at load-time of the add-in, and in all the workbooks which will be opened after the add-in is installed.

Dim WithEvents App As Application

Private Sub App_WorkbookOpen(ByVal Wb As Excel.Workbook)

 TestLink Wb

End Sub

Private Sub TestLink(Wb As Workbook)

 Dim Link, I As Integer

 If IsEmpty(Wb.LinkSources(xlExcelLinks)) Then Exit Sub

 For Each Link In Wb.LinkSources(xlExcelLinks)

 If Link = Me.FullName Then Exit Sub

 For I = Len(Link) To 1 Step -1

 If Mid$(Link, I, 1) = "\" Then Exit For

 Next I

 If Mid$(Link, I + 1) = Me.Name Then

 Wb.ChangeLink Link, Me.FullName, xlExcelLinks

 Exit Sub

 End If

 Next Link

End Sub

Private Sub Workbook_Open()

 Dim Wb As Workbook

 For Each Wb In Workbooks

 TestLink Wb

 Next Wb

 Set App = Application

End Sub

SPECIAL VBA PROJECT: Custom Number Formats

by Guy Boertje

Finds all of the user-defined custom number formats in a workbook.

Here's how it works.

1) Save a temporary copy of the workbook.

2) Open the raw binary file.

3) Find the bottom of file (BOF) marker in the Workbook globals stream of the compound OLE2 doc.

4) Find the end of file (EOF) marker in the Workbook globals stream.

5) Scan between the first byte and the EOF mark looking for number format records.

6) If one is found, extract the number format string and add it to a collection.

7) Stop when the EOF mark is reached. Close the binary file.

8) Convert the collection of strings to an array of strings.

9) Return the array.

Option Explicit

Const csNNF As String = "not number format"

Sub RetrieveCustomNumbersFormats()

Dim v, i As Integer

 v = getCustomNumberFormats(ActiveWorkbook)

 For i = 0 To UBound(v)

 ActiveSheet.Cells(i + 1, 1) = v(i)

 Next

End Sub

Public Function getCustomNumberFormats(wb As Workbook) As Variant

'input - a workbook object

'output - an array of strings

Const BOF_L As Byte = 9, BOF_U As Byte = 8

Const FMT_L As Byte = 30, FMT_U As Byte = 4, U_IDX As Integer = 160

Const EOF_L As Byte = 10, EOF_U As Byte = 0

'change these constants to suit the path to the temp folder on your system

Const drv As String = "C:", stp As String = "TEMP",

fold As String = "WINDOWS"

Dim hFile As Long, lngLen As Long, i As Long, fIs97 As Boolean

Dim NumFormats() As String, s As String, sep As String

Dim sPath As String, c As New Collection, wbA As Workbook

Dim lngBegin As Long, lngEnd As Long

 'first we need to create a temporary copy of the file to scan

 sep = Application.PathSeparator

 '### adjust below to suit location of your temp folder

' sPath = drv & sep & stp & sep & wb.Name

 sPath = drv & sep & fold & sep & stp & sep & wb.Name

 '###

 'set xl97 file format flag

 fIs97 = (wb.FileFormat = xlWorkbookNormal Or wb.FileFormat = xlExcel9795)

 wb.SaveCopyAs sPath

 hFile = FreeFile

 Open sPath For Binary Access Read As hFile

 lngLen = LOF(hFile) - 1

 If lngLen > 0 Then

 'find the beginning of the workbook globals stream

 lngBegin = FindBofGlobals(hFile, BOF_L, BOF_U, fIs97)

 'find the end of the workbook globals stream

 lngEnd = FindEofMarker(hFile, EOF_L, EOF_U)

 'sometimes there are number format records before the BOF

 'so scan from the first byte

 If lngBegin > 0 Then lngBegin = 1

 'were the workbook globals markers found?

 If lngBegin > 0 And lngEnd > 0 Then

 'reset the file position

 Seek hFile, lngBegin

 Do While Seek(hFile) < lngEnd

 'scan for a format record

 'i will be the ifmt field

 s = getFmtRec(hFile, FMT_L, FMT_U, i, fIs97)

 'was one found?

 If Not s = csNNF Then

 'greater than U_IDX is a custom format

 'use AddTo because if we find the same number format

 'in a different record we don't want to add it twice

 'we might do because we are scanning from the

 'start of the file not the start of the workbook

 'globals stream

 If i > U_IDX Then AddTo c, s

 End If

 Loop

 End If

 End If

 Close hFile

 lngLen = c.Count - 1

 'transfer the collection of strings to an array of strings

 'I think its better to return an array and keep the collection

 'object local

 If lngLen >= 0 Then

 ReDim NumFormats(lngLen)

 For i = 0 To lngLen

 NumFormats(i) = c(i + 1)

 Next

 getCustomNumberFormats = NumFormats

 End If

 Set c = Nothing

 'get rid of the temp file

 If Len(Dir(sPath)) > 0 Then Kill sPath

End Function

Private Function getFmtRec(h As Long, Lbyte As Byte, Ubyte As Byte, _

i As Long, f97 As Boolean) As String

Dim rec(1) As Byte, l As Long, s As String, o As Long

Dim t As Long, f As Boolean, bytA As Byte, bytB As Byte

Dim j As Long

 'structure of a number format BIFF record

 '2 bytes marker

 '2 bytes size

 '2 bytes ifmt

 '1 byte length of the format string (can only be 255 characters long)

 'n bytes format string (with two zero bytes if xl97 file fmt)

 getFmtRec = csNNF

 s = vbNullString

 'get the first byte

 Get h, , rec(0)

 'is it the first part of the number formats marker?

 If rec(0) = Lbyte Then

 'if so then get the next byte

 Get h, , rec(1)

 'is it the second part of the number formats marker?

 If rec(1) = Ubyte Then

 o = getTwoBytes(h) 'get the offset - the size of the record

 i = getTwoBytes(h) 'get the ifmt field - number format is

'built-in or custom

 t = getOneByte(h) 'get the length of the format string

 'check that the offset and the length of the format string

 'differ by 5 bytes

 l = o - 5

 If t <> l Then Debug.Print o; l; t 'if this bit executes then

'there are corrupted records

 'in the xl97 file format there are two null bytes before

 'the format string

 If f97 Then t = t + 2

 s = getFormatString(h, t, Ubyte, Lbyte)

 If f97 Then

 'strip the two null bytes away

 getFmtRec = Mid$(s, 3)

 Else

 getFmtRec = s

 End If

 End If

 End If

End Function

Private Function getFormatString(h As Long, l As Long, Ubyt As Byte, Lbyt As Byte) As String

Dim j As Long, byt(1) As Byte, s As String

 For j = 1 To l

 Get h, , byt(0)

 'while getting the string, make sure that

 'it is not the start of the next format record

 If byt(0) = Lbyt Then

 Get h, , byt(1)

 If byt(1) = Ubyt Then

 'if a number format record is found then

 'move the file pointer back two bytes and exit

 Seek h, Seek(h) - 2

 Exit For

 Else

 'otherwise move the file pointer back one byte

 'making sure that no bytes are skipped

 Seek h, Seek(h) - 1

 End If

 End If

 s = s & Chr$(byt(0))

 Next

 getFormatString = s

End Function

Sub AddTo(c As Collection, s As String)

 'will get an error if the key has been used before

 'this guarantees that each string in the collection is unique

 On Error Resume Next

 c.Add Item:=s, key:=s

End Sub

Private Function FindBofGlobals(h As Long, Lbyte As Byte, Ubyte As Byte, f97 As Boolean) As Long

Dim rec(1) As Byte, recA(5) As Byte, l As Long, s As String

Dim offs(1) As Byte, bifv(1) As Byte

Dim wgbl(1) As Byte, place As Long, f As Boolean

 If f97 Then

 'in xl97 the BOF record is 16 bytes long

 offs(0) = 16: offs(1) = 0

 'biff8 is indicated by a 6 in the upper byte

 bifv(0) = 0: bifv(1) = 6

 Else

 'previously it was 8 bytes long

 offs(0) = 8: offs(1) = 0

 'biff5or7 is indicated by a 5 in the upper byte

 bifv(0) = 0: bifv(1) = 5

 End If

 'the workgroup globals BOF is marked as 5

 'there are other BOFs records, marked differently

 wgbl(0) = 5: wgbl(1) = 0

 FindBofGlobals = -1

 Do

 'jump in 2 byte steps until the BOF record or the end of file

'is reached

 Get h, , rec

 If Seek(h) >= LOF(h) - 7 Then Exit Function

 f = (rec(0) = Lbyte And rec(1) = Ubyte)

 If f Then

 'remember point where we have tested for BOF marker

 'now we test for the other elements for a valid wb global bof

 place = Seek(h)

 Get h, , recA

 'is the offset the correct size?

 'is the biff version correct?

 'is it a wb global bof?

 f = recA(0) = offs(0) And recA(1) = offs(1) And _

 recA(2) = bifv(0) And recA(3) = bifv(1) And _

 recA(4) = wgbl(0) And recA(5) = wgbl(1)

 If Not f Then Seek h, place 'move the file pointer back to the remembered point

 End If

 Loop Until f

 'return the start point of the bof record

 FindBofGlobals = place - 2

End Function

Private Function FindEofMarker(h As Long, Lbyte As Byte, Ubyte As Byte) As Long

Dim rec(1) As Byte, f As Boolean, place As Long

 FindEofMarker = -1

 Do

 'jump in two byte steps until the EOF record or the end of file is

'reached

 Get h, , rec

 If Seek(h) >= LOF(h) - 5 Then Exit Function

 'is it an eof record?

 f = (rec(0) = Lbyte And rec(1) = Ubyte)

 If f Then

 'remember last eof tested point

 place = Seek(h)

 'are the next two bytes both zero?

 'they should be for a valid eof

 f = (getTwoBytes(h) = 0)

 If Not f Then Seek h, place

 End If

 Loop Until f

 'return the start point of the eof record

 FindEofMarker = place - 2

End Function

Private Function getTwoBytes(h As Long) As Long

Dim rec(1) As Byte, l As Long

 'returns the next two bytes in the file as a Long

 Get h, , rec

 getTwoBytes = CLng(rec(0)) + CLng(rec(1)) * 256

End Function

Private Function getOneByte(h As Long) As Integer

Dim rec As Byte

 'returns the next byte in the file as an Integer

 Get h, , rec

 getOneByte = rec

End Function

Issue No.15 OF EEE (PUBLISHED 22Dec1999)

Next issue scheduled for 01Feb2000.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 16th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is now a monthly publication. Feel free to distribute copies of EEE to your friends and colleagues. New issues are normally available on the 1st of each month. There will be periods when EEE is not published due to time and travel constraints.

TOP EXCEL WEB SITES

Visit Chip Pearson's growing and everchanging Excel web site at:

http://www.cpearson.com

A new addition to his site are two interesting Excel games (free with unprotected source code) made by yours truly.

http://www.cpearson.com/excel/games.htm

This web page provides a wealth of diverse Excel information.

http://www.mathtools.net/Excel/index.html

WORKSHEET FORMULA TIP

by Harlan Grove

Needed: A formula to determine if the items contained in Range1 are contained in Range2. If not, then a comparison of Range1 will be made to another range and so on. For example:

Range1:

 A B C

PEAR APPLE ORANGE

Range2:

 A B C D

PEAR APPLE ORANGE BANANA

To check if everything in Range1 appears in Range2, you could use this array formula:

=AND(NOT(ISNA(MATCH(Range1,Range2,0))))

Trickier: if all single row ranges to check Range1 against are collected into a single table, for example, Range 3 as

pear mango orange

pear mango grapes banana dates

pear grapes orange banana

grapes mango orange banana

pear apple grapes banana dates figs

apple pear orange banana

grapes apple orange banana

pear apple orange banana dates figs cheries

then the following array function will return the row index of the first (topmost) row in which there's a match for all entries in Range1:
=MATCH(COLUMNS(Range1),MMULT(COUNTIF(Range1,Range3),TRANSPOSE(COLUMN(Range3)^0)),0)

which takes advantage of COUNTIF's peculiar semantics when both of its arguments are arrays. This formula returns 6.

POWER FORMULA TECHNIQUE

by David Hager

This array formula returns TRUE if the number in cell A1 is a Fibonacci number. A Fibonacci number is a member of the number series 1,1,2,3,5,8,13,21,34,55,89,... which is intimately linked to a variety of growth and life processes.

=OR(A1=ROUND((((SQRT(5)+1)/2)^ROW(1:73))/SQRT(5),0))

by Harlan Grove

This formula is a general two dimensional array reshaping formula for an array of size NewRows x NewCols, similar to APL's RHO array, that works for any worksheet array A.

=N(OFFSET(A,MOD(INT(((ROW(INDIRECT("1:"&NewRows))-1)*NewCols+

TRANSPOSE(ROW(INDIRECT("1:"&NewCols))-1))/COLUMNS(A)),

ROWS(A)),MOD(((ROW(INDIRECT("1:"&NewRows))-1)*NewCols+

TRANSPOSE(ROW(INDIRECT("1:"&NewCols))-1)),COLUMNS(A)),1,1))

For example, if A is {11,12;21,22;31,32;41,42;51,52;61,62}, NewRows has value 5 and NewCols has value 3, this formula gives {11,12,21;22,31,32;41,42,51;52,61,62;11,12,21}.

VBA CODE EXAMPLES

by David Hager

Use the first function to read a range from a closed workbook into an array and the second procedure for direct input into a range on the active worksheet.

'CWRIA is short for ClosedWorkbookRangeIntoArray

Function CWRIA(fPath As String, fName As String, sName As String, rng As String)

 Dim sRow As Integer

 Dim sColumn As Integer

 Dim sRows As Integer

 Dim sColumns As Integer

 Dim vrow As Integer

 Dim vcol As Integer

 Dim fpStr As String

 Dim cArr()

 On Error GoTo NoArr

 If Right(fPath, 1) <> "\" Then fPath = fPath & "\"

 If Dir(fPath & fName) = "" Then

 CWA = CVErr(xlErrValue)

 Exit Function

 End If

 sRow = Range(rng).Row

 sColumn = Range(rng).Column

 sRows = Range(rng).Rows.Count

 sColumns = Range(rng).Columns.Count

 ReDim cArr(sRows, sColumns)

 For vrow = 1 To sRows

 For vcol = 1 To sColumns

 fpStr = "'" & fPath & "[" & fName & "]" & sName & "'!" & _

 "r" & sRow + vrow - 1 & "c" & sColumn + vcol - 1

 cArr(vrow, vcol) = ExecuteExcel4Macro(fpStr)

 Next

 Next

 CWRIA = cArr

 Exit Function

NoArr:

 CWRIA = CVErr(xlErrValue)

End Function

'CWRIR is short for ClosedWorkbookRangeIntoArray

Sub CWRIR(fPath As String, fName As String, sName As String, rng As String, destRngUpperLeftCell As String)

 Dim sRow As Integer

 Dim sColumn As Integer

 Dim sRows As Integer

 Dim sColumns As Integer

 Dim vrow As Integer

 Dim vcol As Integer

 Dim fpStr As String

 Dim cArr()

 On Error GoTo NoArr

 If Right(fPath, 1) <> "\" Then fPath = fPath & "\"

 If Dir(fPath & fName) = "" Then

 CWA = CVErr(xlErrValue)

 Exit Function

 End If

 sRow = Range(rng).Row

 sColumn = Range(rng).Column

 sRows = Range(rng).Rows.Count

 sColumns = Range(rng).Columns.Count

 ReDim cArr(sRows, sColumns)

 Set destRange = ActiveSheet.Range(destRngUpperLeftCell)

 For vrow = 1 To sRows

 For vcol = 1 To sColumns

 fpStr = "'" & fPath & "[" & fName & "]" & sName & "'!" & _

 "r" & sRow + vrow - 1 & "c" & sColumn + vcol - 1

 destRange.Offset(vrow - 1, vcol - 1) = ExecuteExcel4Macro(fpStr)

 Next

 Next

NoArr:

End Sub

The following procedure copies the values from the range A1:C3 from Sheet1 of the closed workbook cellDataVal.xls located at D:\EXCEL97\xlformulas to the range F9:H11 on the active worksheet.

Sub InsertRangeFromClosedWorkbook()

 CWRIR "D:\EXCEL97\xlformulas", "cellDataVal.xls", "Sheet1", "a1:c3", "f9"

End Sub

POWER PROGRAMMING TECHNIQUES

by xxxxxx

Here is a method for counting instances of Excel application and storing the handles for each instance in an array.

Option Explicit

Private Declare Function FindWindow Lib "user32" Alias "FindWindowA"(ByVal lpClassName As String, ByVal lpWindowName As String) As Long

Private Declare Function GetNextWindow Lib "user32" Alias "GetWindow"(ByVal hwnd As Long, ByVal wFlag As Long) As Long

Private Declare Function GetClassName Lib "user32" Alias "GetClassNameA"(ByVal hwnd As Long, ByVal lpClassName As String, ByVal nMaxCount As Long) As Long

Private Const GW_HWNDNEXT = 2

Sub xlInstances()

 Dim hwnd As Long, lRet As Long

 Dim hWndArray() As Long

 Dim i As Integer

 Dim sClassBuffer As String

 i = 0

 hwnd = FindWindow("XLMAIN", vbNullString)

 If hwnd <> 0 Then

 ReDim hWndArray(i)

 hWndArray(i) = hwnd

 Do

 hwnd = GetNextWindow(hwnd, GW_HWNDNEXT)

 If hwnd = 0 Then Exit Sub

 sClassBuffer = String(255, 0)

 lRet = GetClassName(hwnd, sClassBuffer, Len(sClassBuffer))

 sClassBuffer = Left(sClassBuffer, InStr(1, sClassBuffer, Chr(0),

 vbTextCompare) - 1)

 If UCase(sClassBuffer) = "XLMAIN" Then

 i = i + 1

 ReDim Preserve hWndArray(i)

 hWndArray(i) = hwnd

 End If

 Loop

 End If

End Sub

Keep the Array hWndArray global, so that you can access it outside the search function. The handle is valid as long as the instance exists and will die if you quit Excel.

by Tom Ogilvy and David Braden

A FAST method for building an unique list from data in column A.

Sub BuildUnique1()

Dim vArr As Variant

Dim vArr1 As Variant

Set RNG = Range(Cells(1, "A"), Cells(1, "A"). End(xlDown))

vArr = Application.Transpose(RNG)

ShellSort vArr

ReDim vArr1(1 To 1)

vArr1(1) = vArr(1)

j = 1

For i = LBound(vArr, 1) + 1 To UBound(vArr, 1)

If vArr(i) <> vArr1(j) Then

 j = j + 1

 ReDim Preserve vArr1(1 To j)

 vArr1(j) = vArr(i)

End If

Next

End Sub

Using David Braden's implementation of ShellSort:

Sub ShellSort(list As Variant, Optional ByVal LowIndex As Variant, Optional HiIndex As Variant)

 'Translation of Shell's Sort as described in "Numerical Recipes in C", 2nd edition, Press et al. For large arrays, consider Quicksort. This algorithm is at least as good up to about 100 or so elements. But with 500 randomized elements it is about 27% slower than QSort, and looks increasingly worse as the array size increases.

 'Dec 17, '98 - David J. Braden

 Dim i As Long, j As Long, inc As Long

 Dim var As Variant

 If IsMissing(LowIndex) Then LowIndex = LBound(list)

 If IsMissing(HiIndex) Then HiIndex = UBound(list)

 inc = 1

 Do While inc <= HiIndex - LowIndex: inc = 3 * inc + 1: Loop

 Do

 inc = inc \ 3

 For i = LowIndex + inc To HiIndex

 var = list(i)

 j = i

 Do While list(j - inc) > var

 list(j) = list(j - inc)

 j = j - inc

 If j <= inc Then Exit Do

 Loop

 list(j) = var

 Next

 Loop While inc > 1

End Sub

by Laurent Longre

VBA code for placing a shortcut on the desktop.

Declare Function SHGetSpecialFolderLocation Lib "Shell32" (ByVal hwnd As Long, ByVal nFolder As Long, ppidl As Long) As Long

Declare Function SHGetPathFromIDList Lib "Shell32" (ByVal Pidl As Long, ByVal pszPath As String) As Long

Declare Function SetWindowPos Lib "User32" (ByVal hwnd As Long, ByVal hWndInsertAfter As Long, _

 ByVal X As Long, ByVal Y As Long, ByVal cx As Long, ByVal cy As Long, ByVal uFlags As Long) As Long

Declare Function SetForegroundWindow Lib "User32" (ByVal hwnd As Long) As Long

Declare Function GetForegroundWindow Lib "User32" () As Long

Function ShortCut(Target As String, Optional Target_Type As Long) As Boolean

 Dim hwnd As Long

 Dim Pidl As Long

 Dim Bureau As String

 If Dir(Target & IIf(Target_Type = vbDirectory, "\", ""), Target_Type) = "" Then Exit Function

 SHGetSpecialFolderLocation 0, 0, Pidl

 Bureau = Space(260)

 SHGetPathFromIDList Pidl, Bureau

 Bureau = Left(Bureau, InStr(1, Bureau, vbNullChar) - 1)

 hwnd = GetForegroundWindow

 SetWindowPos hwnd, -1, 0, 0, 0, 0, 3

 Shell "RunDLL32 AppWiz.Cpl,NewLinkHere " & Bureau & "\"

 SendKeys """" & Target & """~~", True

 SetForegroundWindow hwnd

 ShortCut = True

End Function

Sub Test()

 ' Creates a shortcut to the directory "C:\Temp"

 MsgBox IIf(ShortCut("C:\Temp", vbDirectory), "Shortcut created", "Can't find the directory")

 ' Creates a shortcut to the file "C:\Temp\Zaza.xls"

 MsgBox IIf(ShortCut("C:\Temp\Zaza.xls"), "Shortcut created", "Can't find the file")

End Sub

EXCEL DEVELOPER'S TIP

by Jim Rech

How to duplicate your VBE setup.

So you've got your new PC and you've copied over your Excel.xlb and Personal.xls from the old machine. Now you go into the VBE and... oh yeah, how do you copy over your VBE preferences, customizations and toolbars?

Here's how:

- Run RedEdit.exe

- Navigate to the key HKEY_CURRENT_USER\Software\Microsoft\VBA\6.0\Common for Office 2000 or HKEY_CURRENT_USER\Software\Microsoft\VBA\Office for Office 97.

- From the file menu pick Export Registry File and select a file name.

- Copy the resulting REG file to the new machine.

- On the new machine you can run RegEdit and pick Import Registry File or from Windows Explorer right click on the file and select Merge.

Issue No.16 OF EEE (PUBLISHED 01Feb2000)

Next issue scheduled for 01Mar2000.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 17th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is now a monthly publication. Feel free to distribute copies of EEE to your friends and colleagues and to contribute your Excel

gems to EEE so that others can benefit from your work. New issues are normally available on the 1st of each month. There will be periods when EEE is not published due to time and travel constraints.

Top Excel Sites

Go to this site for a great index of Excel information.

http://www.mathtools.net/Excel/index.html

WEB INFORMATION ON:

ExecuteExcel4Macro method

Access to closed workbooks:

http://eva.dc.lsoft.com/scripts/wa.exe?A2=ind9908D&L=excel-l&P=R8921&m=28403

http://eva.dc.lsoft.com/scripts/wa.exe?A2=ind9812C&L=excel-l&P=R8589&m=28403

http://x43.deja.com/=dnc/getdoc.xp?AN=370019007&CONTEXT=936234727.222691395&hitnum=103

http://x30.deja.com/=dnc/getdoc.xp?AN=394587442&CONTEXT=936236165.1461321770&hitnum=69

Excel charts:

http://peach.ease.lsoft.com/scripts/wa.exe?A2=ind9810B&L=excel-g&P=R5489

http://x30.deja.com/=dnc/getdoc.xp?AN=497422618&CONTEXT=936236165.1461321770&hitnum=37

http://x43.deja.com/=dnc/getdoc.xp?AN=362117773&CONTEXT=936234727.222691395&hitnum=121

http://x43.deja.com/=dnc/getdoc.xp?AN=247283361&CONTEXT=936234727.222691395&hitnum=187

Printing:

http://x43.deja.com/=dnc/getdoc.xp?AN=240180079&CONTEXT=936234727.222691395&hitnum=191

http://x43.deja.com/=dnc/getdoc.xp?AN=296331018&CONTEXT=936234727.222691395&hitnum=160

http://support.microsoft.com/support/kb/articles/Q139/4/05.asp

Formula.Find:

http://www.mailbase.ac.uk/lists/excel-vb-discuss/1999-03/0001.html

Custom Views:

http://eva.dc.lsoft.com/scripts/wa.exe?A2=ind9606&L=excel-l&P=R8426

http://eva.dc.lsoft.com/scripts/wa.exe?A2=ind9606&L=excel-l&P=R8508

Delete Rows:

http://x30.deja.com/=dnc/getdoc.xp?AN=484149794&CONTEXT=936236165.1461321770&hitnum=97

Set.Update.Status

http://support.microsoft.com/support/kb/articles/Q108/3/84.asp

Close:

http://x43.deja.com/=dnc/getdoc.xp?AN=209988463&CONTEXT=936234727.222691395&hitnum=202

ShowBar:

http://x43.deja.com/=dnc/getdoc.xp?AN=364967596&CONTEXT=936234727.222691395&hitnum=120

WORKSHEET FORMULA TIP

by Harlan Grove

Question from Microsoft Excel worksheet formula newsgroup:

Is there a formula that I could use to count the number of rows that contain data based on my criteria... Using this data as an example

 A B C D E F

 1 3 5 8 12 13

 3 2 6 5 7 9

 5 7 4 8 12 3

I would like to identify how many times 3 and 5 appear together and I might even want to identify how many times 3, 5 and 12 appear together. From the above example data you can see that the numbers 3, 5 and 12 wont always be in the same column, using DCOUNT restricts me to identifying the column heading in my field criteria... My criteria my look like this

Column headings---- Find 1 Find 2 Find 3 Find 4 Find 5 Find 6

and I would enter---- 3 5 12

the formula / function - whatever it is that would do what I require would return a count on the number of rows that contain 3,5 and 12 any order...

Answer:

With your sample data range named MyData and the 'criteria' entry cells (all 6) range above named MyCrit, try this array formula.

=COUNT(IF(MMULT(COUNTIF(MyCrit,MyData),TRANSPOSE(COLUMN(MyData)^0))=COUNT(MyCrit),1))

Note: this assumes no duplicate 'criteria' entries.

POWER FORMULA/FUNCTION TECHNIQUES

by David Hager

I wrote this array formula to combine the functionality of the XIRR and MIRR functions. This formula returns the internal rate of return for a schedule of cash flows that is not necessarily periodic while considering both the cost of the investment and the interest received on reinvestment of cash. The fields used in the formula are defined below.

=POWER((SUM(IF(values>0,values*(POWER(1+rRate,(MAX(dates)-dates)/daybase)),0)))/(SUM(IF(values<0,values/(POWER(1+iRate,(MAX(dates)-dates)/daybase)),0)))*-1,1/((MAX(dates)-MIN(dates))/daybase))-1

where:

values is the row or column range of cashflows

dates is the row or column range of corresponding dates

iRate is the interest rate you pay on the money used in the cash flows

rRate is the interest rate you receive on the cash flows as you reinvest them

daybase is days-in-year basis to use (usually 360 or 365).

The following UDF provides the same functionality as the array formula.

Function XMIRR(TheValues As Range, TheDates As Range, iRate, rRate, daybase)

 Dim rCount As Integer

 Dim cCount As Integer

 Dim rCounter As Integer

 Dim cCounter As Integer

 Dim TheVal As Double

 Dim TheDate As Double

 Dim MaxDate As Double

 Dim MinDate As Double

 Dim PosSum As Double

 Dim NegSum As Double

 On Error GoTo eFunction

 rCount = TheValues.Rows.Count

 cCount = TheValues.Columns.Count

 PosSum = 0

 NegSum = 0

 MinDate = TheDates.Offset(0, 0).Resize(1, 1).Value

 If rCount > cCount Then

 MaxDate = TheDates.Offset(rCount - 1, 0).Resize(1, 1).Value

 For rCounter = 0 To rCount - 1

 TheVal = TheValues.Offset(rCounter, 0).Resize(1, 1).Value

 TheDate = TheDates.Offset(rCounter, 0).Resize(1, 1).Value

 If TheVal < 0 Then

 NegSum = NegSum + TheVal / ((1 + iRate) ^ ((TheDate - MinDate) / daybase))

 Else

 PosSum = PosSum + TheVal * ((1 + rRate) ^ ((MaxDate - TheDate) / daybase))

 End If

 Next

 Else

 MaxDate = TheDates.Offset(0, cCount - 1).Resize(1, 1).Value

 For cCounter = 0 To cCount - 1

 TheVal = TheValues.Offset(0, cCounter).Resize(1, 1).Value

 TheDate = TheDates.Offset(0, cCounter).Resize(1, 1).Value

 If TheVal < 0 Then

 NegSum = NegSum + TheVal / ((1 + iRate) ^ ((TheDate - MinDate) / daybase))

 Else

 PosSum = PosSum + TheVal * ((1 + rRate) ^ ((MaxDate - TheDate) / daybase))

 End If

 Next

 End If

 XMIRR = ((PosSum / NegSum * -1) ^ (1 / ((MaxDate - MinDate) / daybase))) - 1

 Exit Function

eFunction:

 XMIRR = CVErr(2015)

End Function

by Laurent Longre

This VB function returns the same result as Excel's WEEKNUM function.

Function WKNUM(D As Date) As Long

 D = Int(D)

 WKNUM = DateSerial(Year(D + (8 - WeekDay(D)) Mod 7 - 3), 1, 1)

 WKNUM = ((D - WKNUM - 3 + (WeekDay(WKNUM) + 1) Mod 7)) \ 7 + 1

End Function

VBA CODE EXAMPLES

by Jim Rech

This procedure changes the font size in all cell comments on a worksheet.

Sub ChgAllComments()

 Dim Cell As Range

 For Each Cell In Cells.SpecialCells(xlCellTypeComments)

 Cell.Comment.Shape.TextFrame.Characters.Font.Size = 9

 Next

End Sub

by Stephen Bullen

This procedure open shows Excel's DataForm in New Record mode.

Sub ShowDataFormWithNewRecord()

 'Send a keystroke

 SendKeys "+{TAB 6} "

 'This is the same as ActiveSheet.ShowDataForm, but without the International Issues

 CommandBars.FindControl(Id:=860).Execute

End Sub

EXCEL DEVELOPER'S TIPS

Pull in correct values from Internet:

When importing stock data into a sheet using a web query, fractional stock prices less than 1 may be interpreted by Excel as dates. However, selecting Tools, Options, Transition and then clicking "Transition formula entry" coerces Excel into accepting the desired value.

Use class modules from another project:

By John Green

You can create an instance of a class in another project by creating a function in the referenced project containing the class module. In the project containing the class module, include something like the following code, in a standard module:

Function GetClass() As Class1

 Set GetClass = New Class1

End Function

In the project that wants to access the class, use something like the following code:

Dim cls As Object

Sub Test()

 Set cls = GetClass()

End Sub

Issue No.17 OF EEE (PUBLISHED 01Mar2000)

Next issue scheduled for 01Apr2000.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 18th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is now a monthly publication. Feel free to distribute copies of EEE to your friends and colleagues and to contribute your Excel

gems to EEE so that others can benefit from your work. New issues are normally available on the 1st of each month. There will be periods when EEE is not published due to time and travel constraints.

IMPORTANT NOTE!!! I have just discovered that my mailing list has suffered from tremendous problems. A significant number of people on the list have been receiving multiple copies of EEE and over 100 people have been somehow kicked off of the list over a period of months. The software I am using to manage the list is old and obviously contains bugs I was not aware of. I have put in a significant amount of time to try to correct this problem. I apologize to all of the people that have not been receiving EEE. I hope that this fix solves the problem.

Top Excel Sites

For a list of fixed problems in Microsoft Office 2000 Service Release 1 (SR-1), go to:

http://support.microsoft.com/support/kb/articles/q245/0/21.ASP

WORKSHEET FORMULA TIPS

by Bernie Deitrick

Question: I have a formula

=COUNTIF('Sheet1'!Ddd2346, "=0")

in a cell, where Ddd2346 refers to a named range. What I would like to do is to have an easy way to copy this formula down a column of cells, and have the Ddd2346 number increment by one each time. The next cell needs to be Ddd2347, then Ddd2348 etc.
Answer: In this specific case, use:

=COUNTIF(INDIRECT("Ddd"&2345+ROW(A1)),"=0")

When this formula is filled down the column, the numeric suffixes of the named ranges increment by one.

POWER FORMULA/FUNCTION TECHNIQUES

by George Simms

Question: I have the following problem:

In cells A1:E1: 1, 2, 3, 4, 5

In cells A2:E2: 6, 7, 8, 9, 10

In cells A5:E5: 21, 22, 23, 24, 25

Now I want to total diagonally (A1, B2, C3, D4 and E5) and I do that by the formula:

=SUM((ROW(A1:A5)=COLUMN(A1:E1))*(A1:E5)) - array entered.

This works fine (sum =65), but I wondered how can I total diagonally "the other way" (here A5, B4, C3, D2 and E1)?

Answer: To sum A5:E1 diagonally, use: =SUM(N(OFFSET(E1,ROW(1:5)-1,-1*ROW(1:5)+1)))

Or (not Array Entered):

=SUMPRODUCT(N(OFFSET(E1,ROW(INDIRECT("1:5"))-1,-1*ROW(INDIRECT("1:5"))+1)))

It would be better to use ROW(INDIRECT("1:5") in all the formulas, like

=SUM(N(OFFSET(E1,ROW(INDIRECT("1:5"))-1,-1*ROW(INDIRECT("1:5"))+1)))

as inserting a row above row 5 will change the reference. To sum across sheets (Sheet1!A1 Sheet2!B2 Sheet3!C3..etc) use:

=SUM(N(INDIRECT("Sheet"&ROW(1:5)&"!"&ADDRESS(ROW(1:5),ROW(1:5)))))

Or (not Array Entered):

=SUMPRODUCT(N(INDIRECT("Sheet"&ROW(1:5)&"!"&ADDRESS(ROW(1:5),ROW(1:5)))))

VBA CODE EXAMPLES

by Tom Ogilvy and Dana DeLouis

Question: I'd like to expand the Custom Autofilter to 3 or more entries.

This procedure assumes you want to display cells that have a,b, and c in the Cell in column A. If you are looking for multiple "Or" conditions, then use Union instead of Intersect.

Sub MultCustomAutoFilter()

 Dim rng1 As Range

 Dim rng2 As Range

 Dim rngAll3 As Range

 Range("A1").AutoFilter

 With [_FilterDatabase].Offset(1)

 Range("A1").AutoFilter Field:=1, Criteria1:="*a*", Operator:=xlAnd, Criteria2:="*b*"

 Set rng1 = .SpecialCells(xlVisible)

 Range("A1").AutoFilter Field:=1, Criteria1:="*c*"

 Set rng2 = .SpecialCells(xlVisible)

 ActiveSheet.AutoFilterMode = False

 Set rngAll3 = Application.Intersect(rng1, rng2)

 .EntireRow.Hidden = True

 rngAll3.EntireRow.Hidden = False

 End With

End Sub

This procedure works for Excel 2000. For prior version change the range object in the With statement to: ActiveSheet.AutoFilter.Range.Offset(1, 0)

by Bill Manville

Question: Is there a way to reliably code the show detail and hide detail commands off of the "Data" menu into a VB macro?

Answer: This feature is not well supported by VBA. Thus, to hide the detail for the block within which the cursor sits, use:

ExecuteExcel4Macro "SHOW.DETAIL(1," & ActiveCell.Row & ",FALSE)"

Answer: by Stephen Bullen

Question: How can I change the name of the vbcomponent based on the name of the related worksheet?
Answer: The CodeName of a sheet can be changed with:

 Sub RenameCodeName(oWks As Sheet, sNewName As String)

 oWks.Parent.VBProject.vbComponents(oWks.CodeName).Properties("_CodeName") = sNewName

 End Sub

POWER PROGRAMMING TECHNIQUE

by Bill Manville

Question: I have to check the contents of a large spreadsheet against a second more up to date spreadsheet in another workbook. The structure of the 2 workbooks is the same. How can I identify which cells differ so I can investigate those individually.

Answer: This procedure creates a new workbook which lists the comparison results for each worksheet in the two workbooks of interest. Each of the two workbooks should be open prior to running this procedure. Replace the dummy names in the the DoCompare sub with appropriate filenames.

Sub DoCompare()

 Dim WS As Worksheet

 Workbooks.Add

 For Each WS In WorkBooks("SomeBook.xls").Worksheets

 CompareSheets WS, Workbooks("SomeOther.xls").Worksheets(WS.Name)

 Next

End Sub

Sub CompareSheets(WS1 As Worksheet, WS2 As Worksheet)

 Dim iRow As Integer, iCol As Integer

 Dim R1 As Range, R2 As Range

 Worksheets.Add.Name = WS1.Name ' new book for the results

 Range("A1:D1").Value = Array("Address", "Difference", WS1.Parent.Name, WS2.Parent.Name)

 Range("A2").Select

 For iRow = 1 To Application.Max(WS1.Range("A1").SpecialCells(xlLastCell).Row, _

 WS2.Range("A1").SpecialCells(xlLastCell).Row)

 For iCol = 1 To Application.Max(WS1.Range("A1").SpecialCells(xlLastCell).Column, _

 WS2.Range("A1").SpecialCells(xlLastCell).Column)

 Set R1 = WS1.Cells(iRow, iCol)

 Set R2 = WS2.Cells(iRow, iCol)

 ' compare the types to avoid getting VBA type mismatch errors.

 If TypeName(R1.Value) <> TypeName(R2.Value) Then

 NoteError R1.Address, "Type", R1.Value, R2.Value

 ElseIf R1.Value <> R2.Value Then

 If TypeName(R1.Value) = "Double" Then

 If Abs(R1.Value - R2.Value) > R1.Value * 10 ^ (-12) Then NoteError R1.Address, "Double", R1.Value, R2.Value

 Else

 NoteError R1.Address, "Value", R1.Value, R2.Value

 End If

 End If

 ' record formulae without leading "=" to avoid them being evaluated

 If R1.HasFormula Then

 If R2.HasFormula Then

 If R1.Formula <> R2.Formula Then NoteError R1.Address, "Formula", Mid(R1.Formula, 2), Mid(R2.Formula, 2)

 Else

 NoteError R1.Address, "Formula", Mid(R1.Formula, 2), "**no formula**"

 End If

 Else

 If R2.HasFormula Then

 NoteError R1.Address, "Formula", "**no formula**", Mid(R2.Formula, 2)

 End If

 End If

 If R1.NumberFormat <> R2.NumberFormat Then

 NoteError R1.Address, "NumberFormat", R1.NumberFormat, R2.NumberFormat

 End If

 Next iCol

 Next iRow

 With ActiveSheet.UsedRange.Columns

 .AutoFit

 .HorizontalAlignment = xlLeft

 End With

End Sub

Sub NoteError(Address As String, What As String, V1, V2)

 ActiveCell.Resize(1, 4).Value = Array(Address, What, V1, V2)

 ActiveCell.Offset(1, 0).Select

 If ActiveCell.Row = Rows.Count Then

 MsgBox "Too many differences", vbExclamation

 End

 End If

End Sub

EXCEL TIPS

by John Green

Question: I need a simple macro to take the cell text in a selected cell(s) and add characters such as "." after the text until the cell is filled to its width. You get something like:

Text_here.....

and................

here..............

Answer: All you need to do is apply a custom format (Format|Cells - Number) to the cell such as:

@*.

@ is a place marker for the text and the character after the asterisk is repeated to fill the cell. "*.@" fills to the left.

If you want to do this in code:

Range("A1:A10").NumberFormat = "@*."

Note: If this is done with cells containing numbers, they cannot be operated on as numbers since they are formatted as text. As a workaround to this problem, use:

=SUM(VALUE(range)) ' array-entered, instead of =SUM(range)

by George Simms

Question: The problem I have is that in order to add a value to an existing value field I need to insert an "=" at the beginning of the cell before it displays the solution. If I simply type the "+" or "-" after the value Excel displays

the formula (obviously interpreting it as text). Can I perform this task without inserting the "=" each time?

Answer: There is a way to do what you want, if you use it to only edit your data. From the menu > Tools > Options > Transition tab > Check the "Transition formula entry" box. It is recommend that once you have edited the data, go back and uncheck the box. If left checked this can produce some odd results, entering dates etc.....

Issue No.18 OF EEE (PUBLISHED 01Apr2000)

Next issue scheduled for 01May2000.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 19th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE is normally a monthly publication. Feel free to distribute copies of EEE to your friends and colleagues and to contribute your Excel

gems to EEE so that others can benefit from your work. New issues are normally available on the 1st of each month. There will be periods when EEE is not published due to time and travel constraints.

Top Excel Sites

See http://www.officevba.com for VBA articles and downloadables files of the highest order.

POWER FORMULA TECHNIQUES

by Leo Heuser and Eero Tibar

Question: How can you get a list of unique entries in an n * m array by using a worksheet formula?

Answer: Example: Assuming data in B5 : GR10, enter this array formula in e.g. G12. G11 must be empty or, if it has a value, this value must not occur in B5 : GR10.

=OFFSET(B5,MIN(IF(COUNTIF(G11:G11,B5:GR10)=0,ROW(B5:GR10)-

ROW(B5))),MOD(MIN(IF(COUNTIF(G11:G11,B5:GR10)=0,ROW(B5:GR10)-

ROW(B5) +(COLUMN(B5:GR10)-COLUMN(B5))/1000)),1)*1000)

Drag down until the value in G12 begins repeating.

Here is slightly different approach to extract unique items from a N*M table (named as "tbl" in the formula). Type "Unique items from the table" in A1 and enter the following formula as an array into A2 and copy it down.

=INDEX(tbl,MIN(IF(COUNTIF(A1:A1,tbl)=0,ROW(tbl)-MIN(ROW(tbl))+1)),

MATCH(0,COUNTIF(A1:A1,INDEX(tbl,MIN(IF(COUNTIF(A1:A1,tbl)=0,ROW(tbl)

-MIN(ROW(tbl))+1)),,1)),0),1)

VBA CODE EXAMPLES

by David Hager

Question: I like using the Pick List feature in Excel 97 (and later), but I don't like having to select the menu item for that feature everytime I go to a new cell. How can I solve this problem?

Answer: Place this event procedure in the ThisWorkbook module. Then, any time you select a cell where the pick list would pop up when called from a menu item, it will instead pop up automatically.

Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Excel.Range)

 On Error Resume Next

 With Target

 If .Value <> "" Then Exit Sub

 If .Row = 1 Or .Row = Rows.Count Then Exit Sub

 If .Offset(-1).Value = "" And .Offset(1).Value = "" Then Exit Sub

 If Selection.Address <> .Address Then Exit Sub

 End With

 Application.EnableEvents = False

 SendKeys "+{F10}k"

 Application.EnableEvents = True

End Sub

by Bob Umlas

Question: How can you give users a Print Preview and not allow them to change any of the settings?
Answer: Use the following procedure. It disables key buttons at the top of the preview window.

Sub PrtPvw()

 ActiveSheet.PrintPreview False
'"False"==> no changes allowed

 ActiveWindow.View = xlNormalView
' In case user switched to Page Brake Preview.

End Sub

by Bob Umlas

Question: How can I step through a For-Next loop by using a custom step process?

Answer: If you need to loop through code with an index which takes on specific values like 1,4,5,18,28,33,34,85 instead of the more commom 1,2,3,4,5,6.. or 1,3,5,7,..., then you can use this technique:

Sub OddLoop()

 For i = 1 to 8

 j=Array(1,4,5,18,28,33,34,85)(i)

 'Now use j as your subscript

 Next

End Sub

POWER PROGRAMMING TECHNIQUE

by Bob Umlas

This procedure contains VBA code to add to your existing VBA code. Basically, it puts one statement at the beginning of each procedure in every module (class modules and event procedures not included). This statement is

a call to a routine (which YOU need to write) and passes the sub/function name. For example:
Before:

Sub ABC()

 Dim i as Integer

 For each x in sheets

 Next

End Sub

Sub xyz()

End Sub

After:

Sub ABC()

MyProc "ABC"

 Dim i as Integer

 For each x in sheets

 Next

End Sub

Sub xyz()

MyProc "xyz"

End Sub

Notice that afterwards, there's a new line immediately after the sub. It calls MyProc (this is changeable) and passes the name of the procedure it's in. You can use MyProc to trace flow, track the time, etc -- you can get creative here!

There are 2 main routines: Addit, and Deleteit. Running Addit will insert the one-liner, running Deleteit will remove this one-liner. The code is inserted into the active workbook.

The first line inside the VBE for AddALine.xls is:

Public Const TheProcName As String = "MyProc" '==CHANGE THIS LINE

and whatever you change "MyProc" to will be the routine called inside each procedure of your code.

Public Const TheProcName As String = "MyProc" '==CHANGE THIS LINE

Sub Addit()

'=====
'RUN THIS CODE TO INSERT THE LINE INTO THE ACTIVE WORKBOOK's CODE

'=====

 AddALine

 MsgBox "Done....Don't forget to write procedure " & TheProcName & "!", vbExclamation

End Sub

Sub Deleteit()

'=====
'RUN THIS CODE TO DELETE THE LINE

'=====

 DelALine

 MsgBox TheProcName & " has been deleted from each procedure."

End Sub

Sub AddALine()

Dim ProcName As String, ProcNames() As String, Boo As Boolean

Dim LngR As Long, TheLine As Long, LngI As Long

 Set VBP = ActiveWorkbook.VBProject

 nocomponents = VBP.VBComponents.Count

 On Error Resume Next

 For i = 1 To nocomponents

 If VBP.VBComponents(i).Type = 1 Then 'module

 With VBP.VBComponents(i).CodeModule

 If .Name = "ModInserter" Then GoTo NextOne

 col = .CountOfLines

 codl = .CountOfDeclarationLines

 ProcName = .ProcOfLine(codl + 1, LngR)

 If ProcName = "" Then GoTo NextOne

 If LngR <> 0 Then GoTo NextOne

 TheLine = .ProcBodyLine(ProcName, vbext_pk_Proc)

 thetext = .Lines(TheLine, 1)

 If Right(thetext, 1) = "_" Then j = 2 Else j = 1

 .InsertLines TheLine + j, TheProcName & """" & ProcName & """"

 LngI = codl + 1

 col = col + 1

2:

 If LngI > col Then GoTo 1

 If ProcName <> .ProcOfLine(LngI, LngR) Then

 ProcName = .ProcOfLine(LngI, LngR)

 If LngR <> 0 Then GoTo 3

 TheLine = .ProcBodyLine(ProcName, vbext_pk_Proc)

 thetext = .Lines(TheLine, 1)

 If Right(thetext, 1) = "_" Then j = 2 Else j = 1

 .InsertLines TheLine + j, TheProcName & """" & ProcName & """"

 col = col + 1

 End If

3:

 LngI = LngI + 1

 GoTo 2

1:

 End With

 End If

NextOne:

 Next

End Sub

Sub DelALine()

Dim ProcName As String, ProcNames() As String, Boo As Boolean

Dim LngR As Long, TheLine As Integer, LngI As Integer

 If MsgBox("Are you sure you want to delete " & TheProcName & " from each procedure?", vbYesNo + vbQuestion) = vbNo Then Exit Sub

 Set VBP = ActiveWorkbook.VBProject

 nocomponents = VBP.VBComponents.Count

 On Error Resume Next

 For i = 1 To nocomponents

 If VBP.VBComponents(i).Type = 1 Then 'module

 With VBP.VBComponents(i).CodeModule

 If .Name = "ModInserter" Then GoTo NextOne

 col = .CountOfLines

 codl = .CountOfDeclarationLines

 ProcName = .ProcOfLine(codl + 1, LngR)

 If ProcName = "" Then GoTo NextOne

 If LngR <> 0 Then GoTo NextOne

 TheLine = .ProcBodyLine(ProcName, vbext_pk_Proc)

 thetext = .Lines(TheLine, 1)

 If Right(thetext, 1) = "_" Then j = 2 Else j = 1

 If Left(.Lines(TheLine + j, 1), 5) <> Left(TheProcName, 5) Then

' MsgBox TheProcName & " not found in procedure """ & ProcName & """... ignoring"

 GoTo 22

 End If

 .DeleteLines TheLine + j, 1

22:

 LngI = codl + 1

2:

 If LngI > col Then GoTo 1

 If ProcName <> .ProcOfLine(LngI, LngR) Then

 ProcName = .ProcOfLine(LngI, LngR)

 If LngR <> 0 Then GoTo 3

 If ProcName = "" Then GoTo 3

 TheLine = .ProcBodyLine(ProcName, vbext_pk_Proc)

 thetext = .Lines(TheLine, 1)

 If Right(thetext, 1) = "_" Then j = 2 Else j = 1

 If Left(.Lines(TheLine + j, 1), 5) <> Left(TheProcName, 5) Then

' MsgBox TheProcName & " not found in procedure """ & ProcName & """... ignoring"

 GoTo 3

 End If

 .DeleteLines TheLine + j, 1

 End If

3:

 LngI = LngI + 1

 GoTo 2

1:

 End With

 End If

NextOne:

 Next

End Sub

Sub Showcode()

 MsgBox "Before running ""Addit"", activate the workbook whose code " & "this routine will update."

 MsgBox "Change ""TheProcName"" to the name of the procedure you want " & "to run for each sub."

 Application.SendKeys "{up}{up}"

 Application.Goto "Addit"

End Sub

DEVELOPER TIPS

by Chip Pearson and Stephen Bullen

Question: Why use class modules?

Answer: (Chip Pearson) Basically, a Class is the definition of an Object. The word "object" is deliberately vague. And object is anything that you want to design. It is defined entirely (mostly) by its properties, methods, and events. In Excel, there are hundreds of "built-in" objects, all defined by class modules. The "class" is the definition of an "object". For example, a Worksheet is an object. And there is a class module which defines just what

a Worksheet really is. There are various properties of a Worksheet object (e.g., Visible). Properties simply define and set various attributes. Think of properties as "Adjectives" which describe an object. An object also has Methods. Methods are the "Verbs" of objects. For example, a Worksheet object has an Activate method. This causes something to happen. Finally there are Events. I can't think of a good grammatical analogy for events. Essentially, Events are how an object tells the rest of the world that something happened. For example, in a Worksheet object, there is a Change event. This is the Worksheet object's way of telling the rest of world, "Hey, look at me, I changed". The rest of the world can ignore that event, or it may take action. But the world has been told that object has done something (or had done something to it).

Now, you use Class Modules to create your own objects. Suppose you were writing an application that was used for employee tracking. Using a class module, you would define your own object called "Employee". This class

would define a single, generic, employee. With the DIM and SET statement, you can create a specific employee, based on the "template" or "definition" of a generic employee. The Employee class would have several Properties,

such as Name, Address, and Salary. It could also have methods, such as Promote, GiveRaise, and Fire. In your application, the Promote method would do the same things -- e.g., increasing the Salary property, updating a

central database, sending an email to another department to buy him a nicer computer, etc. These actions are all the same whenever you Promote any employee. By using a Class Module to define a "generic" employee, you only have to write the code once. Then to work with a *specific* employee, you just call the methods for that employee:

Dim ThisEmp As CEmployee

' more code

Set ThisEmp = New CEmployee

ThisEmp.Name = "John Smith"

' more code

ThisEmp.Promote

All of the code related to the Promote event is contained in the Class modules (the definition of any employee), so you can simply call the Promote method. Once you've defined the Class, you never have to worry about what

Promote actually does.

Here's another way to think about it. In the Worksheet object, there is a PrintOut method. Within the PrintOut method, there is all the code that actually formats the worksheet for printing, determines what printer you have, and actually does all the work of printing the sheet. As a VBA programmer, you don't have to worry about any of that. You simply call PrintOut, and let that do all the work for you. You don't have to worry about what sort of printer the user has, whether it can print color, and a hundred other things. You just call PrintOut and let the Object do all the work.

Class Modules let you create you own objects, or extend the functionality of other, existing objects. They are very useful because they allow you to write the code once, and then simply create new objects based on the class (think of it like a blueprint for a house). It is write the code once, and use it many times. For example, I have a class module that extends the functionality of a standard list box. The standard list box doesn't have a MoveUp method,

which simply moves the selected item one row up in the list. By using a Class Module, I added a MoveUp method (as well as MoveDown, MoveToTop, MoveToBottom, etc). I wrote that class one time. Now, whenever I need to

use "better" list boxes in my applications, I just use that Class. I don't have to "re-invent the wheel" for every application I write.

This just scratches the surface of what a Class is and how to use them. If you've ever heard the term "object oriented", Classes are the foundation of this entire design philosophy.

Answer (Stephen Bullen)
Just to provide the opposite end of the spectrum to Chip's excellent answer, class modules can also be though of as user-defined types (UDT) on steroids. A simple UDT can be used to store related information about a particular thing, such as Chip's employee:

Type Employee

 Name As String

 DOB As String

 Grade As String

 Salary As Double

End Type

If you wanted to do stuff with an employee, you'd use a normal procedure somewhere:

Sub RaiseEmployee(uEmp As Employee, sNewGrade As String)

 'Validate Grade

 '...

 uEmp.Grade = sNew Grade

 'Do stuff to work out new salary etc.

 '...

End Sub

Sub FireEmployee(uEmp As Employee)

 uEmp.Grade = "F"

 uEmp.Salary = 0

End Sub

Sub SetSalary(uEmp As Employee, dNewSalary As Double)

 'Validate Salary

 '...

 'Does new salary mean a new grade?

 '...

End Sub

etc.

That's fine as far as it goes and you can create some great programs without ever using class modules. The main thing wrong with it is that the *data* for the object (i.e. the contents of your UDT) is separated from the *actions* that are performed on the data (the RaiseEmployee and FireEmployee subs). Hence, you have to be very careful that the same validation is performed in each sub and that one sub doesn't alter the data in a way that will cause another sub to fail; this is often the cause of some of the hardest bugs to find - logic problems.

If you use a class module instead, you can include the validation and other functionality *with* the data; to the extent that the data can *not* be changed unless it's valid. You can think of it as that the 'Grade' property of the Employee (for example) can validate *itself* and can refuse to be updated, or it can know *itself* that when it changes to a valid new grade, it needs to change the salary too.

In the example above, with two simple procedures, think what would happen if we had to add another check before changing the grade, or introduce a new action to be performed if the grade is changed (such as notifying their

manager). In the procedural approach, we'd have to change two or three routines to handle it - i.e. wherever the grade is set. In the clas module approach, it is simply another action to be performed by the 'grade' property *itself* - none of the other code needs to know about it.

i.e:

Dim msGrade As String 'Data that only code in the class can 'see'

'Property to read the grade

Public Property Get Grade() As String: Grade = msGrade: End property

'Property to set the grade

Public Property Let Grade(sNew As String)

 If Not sNew Is Valid Then

 Err.Raise "Not a valid grade"

 Exit Property

 End If

 'Grade is valid, so we can safely store it

 msGrade = sNew

 'Now what else do we need to do when the grade changes?

 Select Case sNew

 Case "F"

 'Being fired, better ask for a redundancy slip

 Salary = 0

 Case "M"

 'Being made a manager, better ask for a better car

 'Increase the Salary too

 Case "D"

 'Being demoted, schedule for more frequent reviews

 'Decrease the Salary

 'etc

 End Select

End Property

Public Sub Fire()

 Grade = "F"

End Sub

Now, everything that needs to be done when the grade is changed has been

made an *integral* part of changing the grade - there's no way that the

grade can be changed by anywhere else in the system without those checks

and actions happening.

Really, though, it just boils down to a different design and development style, and one that hopefully takes us further down the road of improved code reuse, more stability and fewer opportunities for bugs to creep in.

The hardest thing to work out, though, is to decide which functionality should be 'in' the class module and which should be on the outside, but using the class module. For example, do we have a '.Fire' method within the class, or a Fire(oEmp As Employee) procedure outside that just sets the grade to "F"?

I find that I'm using class modules more and more; it's almost at the stage where if I'm asked "Why use a class module", my reply is "Why not?"

Issue No.19 OF EEE (PUBLISHED 31May2000)

Next issue scheduled for 05July2000.

BY David Hager

dchager@compuserve.com

COMMENTS

Welcome to the 20th issue of the Excel Experts E-letter (or EEE), by David Hager. EEE used to be a monthly publication. It's been a long time since the last issue, and I cannot say when the next issue will be. Feel free to distribute copies of EEE to your friends and colleagues and to contribute your Excel gems to EEE so that others can benefit from your work. Due to problems associated with distribution lists, I cannot mail EEE directly to individuals anymore.

Top Excel Sites

See:

http://home.pacbell.net/beban

for a great collection of array UDFs.

POWER FORMULA TECHNIQUES

by David Hager

How can I find the count of unique items in a filtered column?
Define a column range in your table (excluding header) as Rge.

Define unRge as:

=IF(SUBTOTAL(3,OFFSET(Rge,ROW(Rge)-MIN(ROW(Rge)),,1)),Rge,"")

Then, the array formula to return the # of unique occurrences in a filtered column is:

=SUM(N(IF(ISNA(MATCH("",unRge,0)),MATCH(Rge,Rge,0),IF(MATCH(unRge,unRge,0)

=MATCH("",unRge,0),0,MATCH(unRge,unRge,0)))=ROW(Rge)-MIN(ROW(Rge))+1))

by Tom Ogilvy

How can I set validation so no spaces are allowed?
Select A1:C20 with A1 as the active cell in the selection.

Pick Data > Validation from the menu and select the custom option.

Use the following formula:

=LEN(A1)=LEN(SUBSTITUTE(A1," ",""))

Since you are using relative cell references, the validation formula will adjust to address each of the cells in the selection.

by John Walkenbach and John Green

How can I locate cells containing formulas with literal values?
Use the following UDF as your conditional formatting formula.

Function CellUsesLiteralValue(Cell As Range) As Boolean

 If Not Cell.HasFormula Then

 CellUsesLiteralValue = False

 Else

 CellUsesLiteralValue = Cell.Formula Like "*[=^/*+-/()><,]#*"

 End If

End Function

It accepts a single cell as an argument. It returns True if the cell's formula contains an operator followed by a numerical digit. In other words, it identifies cells that have a formula which contains a literal numeric value. You can test each cell in the range, and highlight it if the function returns True.

by George Simms

If the NETWORKDAYS function (found in the Analysis Toolpak) cannot be used, is there a formula that will perform the same function?
If the Start date is in A1 and the End date is in B1, then use:

=(INT(B1/7)-INT(A1/7))*5+MAX(0,MOD(B1,7)-1)-MAX(0,MOD(A1,7)-2)

VBA CODE EXAMPLES

by Bill Manville

The objective is to prevent people cutting/copying and pasting when your workbook is open.
Run DisableCutAndPaste from a suitable event procedure (e.g. Workbook_Open or Worksheet_Activate) and EnableCutAndPaste from another (e.g. Workbook_Close or Worksheet_Deactivate).

Sub DisableCutAndPaste()

 EnableControl 21, False ' cut

 EnableControl 19, False ' copy

 EnableControl 22, False ' paste

 EnableControl 755, False ' pastespecial

 Application.OnKey "^c", ""

 Application.OnKey "^v", ""

 Application.OnKey "+{DEL}", ""

 Application.OnKey "+{INSERT}", ""

 Application.CellDragAndDrop = False

End Sub

Sub EnableCutAndPaste()

 EnableControl 21, True ' cut

 EnableControl 19, True ' copy

 EnableControl 22, True ' paste

 EnableControl 755, True ' pastespecial

 Application.OnKey "^c"

 Application.OnKey "^v"

 Application.OnKey "+{DEL}"

 Application.OnKey "+{INSERT}"

 Application.CellDragAndDrop = True

End Sub

Sub EnableControl(Id As Integer, Enabled As Boolean)

 Dim CB As CommandBar

 Dim C As CommandBarControl

 For Each CB In Application.CommandBars

 Set C = CB.FindControl(Id:=Id, recursive:=True)

 If Not C Is Nothing Then C.Enabled = Enabled

 Next

End Sub

by Chip Pearson

Is is possible to disable certain menu items on both the toolbar and the right-click pop-up that wil prevent the user from either deleteing/renaming, a sheet without protecting the entire workbook structure?
You can disable them with:

Dim Ctrl As Office.CommandBarControl

For Each Ctrl In Application.CommandBars.FindControls(ID:=847)

 Ctrl.Enabled = False

Next Ctrl

For Each Ctrl In Application.CommandBars.FindControls(ID:=889)

 Ctrl.Enabled = False

Next Ctrl

by Chip Pearson

How can I search through all the cell formulas on a worksheet and find out the cells that reference a specific named range?
Use the following procedure:

Dim Rng As Range

Dim NameRange As Range

Set NameRange = ActiveWorkbook.Names("TheName").RefersToRange

On Error Resume Next

For Each Rng In ActiveSheet.UsedRange.SpecialCells(xlCellTypeFormulas)

 Err.Clear

 If Not Application.Intersect(Rng.DirectPrecedents, NameRange) Is Nothing

Then

 If Err.Number = 0 Then Debug.Print "Cell: " & Rng.Address & " refers to " & NameRange.Address

 End If

Next Rng

POWER PROGRAMMING TECHNIQUE

by Jim Rech

Can I change the Excel logo to something else?
This code shows you how to change the Excel icon:

Declare Function GetActiveWindow32 Lib "USER32" Alias "GetActiveWindow" () As Integer

Declare Function SendMessage32 Lib "USER32" Alias "SendMessageA" (ByVal hWnd As Long, ByVal wMsg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

Declare Function ExtractIcon32 Lib "SHELL32.DLL" Alias "ExtractIconA" (ByVal hInst As Long, ByVal lpszExeFileName As String, ByVal nIconIndex As Long) As Long

Sub ChangeXLIcon()

 Dim h32NewIcon As Long

 Dim h32WndXLMAIN As Long

 h32NewIcon = ExtractIcon32(0, "Notepad.exe", 0)

 h32WndXLMAIN = GetActiveWindow32()

 SendMessage32 h32WndXLMAIN, &H80, 1, h32NewIcon 'Icon big

 SendMessage32 h32WndXLMAIN, &H80, 0, h32NewIcon 'Icon small

End Sub

by Leo Heuser

I would like to create a Excel template which when you open a document from it, it assigns a unique sequential number to the new document. Is there a way of doing this?

Below find two routines to do, what you want. They are both inserted in "ThisWorkbook" (<Alt><F11>) for the template and are fired, when a new invoice is created. The first one saves the current invoice number to the registry, and can be used, if you are the sole user of the system. The second solution saves the number in an INI-file, which you can place, where you please. This solution is useful, if more persons are using the invoice system.

Private Sub Workbook_Open()

'From the template, in the VBA editor, set a reference to Microsoft Visual Basic for Applications Extensibility 5.3 in the menu Tools

Dim WorksheetName As String

Dim WorksheetCell As String

Dim SettingName As String

Dim lLine As Long

Dim InvoiceNumber As Variant

Dim InvoiceNumberCell As Object

Dim TemplateName As String

 TemplateName = "John.xlt"

 WorksheetName = "Invoice"

 WorksheetCell = "F7"

 SettingName = "John"

 Set InvoiceNumberCell = Worksheets(WorksheetName).Range(WorksheetCell)

 If UCase(ActiveWorkbook.Name) = UCase(TemplateName) Then GoTo Finito

 InvoiceNumber = GetSetting(SettingName, WorksheetName, "InvoiceNumber")

 If InvoiceNumber = "" Then

 InvoiceNumber = 1

 Else

 InvoiceNumber = InvoiceNumber + 1

 End If

 SaveSetting SettingName, WorksheetName, "InvoiceNumber", InvoiceNumber

 InvoiceNumberCell.Value = InvoiceNumber

 With

ActiveWorkbook.VBProject.VBComponents(ActiveWorkbook.CodeName).CodeModule

 lLine = .ProcBodyLine("Workbook_Open", vbext_pk_Proc)

 .InsertLines lLine + 1, "Exit Sub"

 End With

Finito:

Set InvoiceNumberCell = Nothing

End Sub

Private Declare Function GetPrivateProfileString Lib "kernel32" Alias "GetPrivateProfileStringA" (ByVal lpApplicationName As String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal lpReturnedString As String, ByVal nSize As Long, ByVal lpFileName As String) As Long

Private Declare Function WritePrivateProfileString Lib "kernel32" Alias "WritePrivateProfileStringA" (ByVal lpApplicationName As String, ByVal lpKeyName As String, ByVal lpString As Any, ByVal lpFileName As String) As Long

Private Sub Workbook_Open()

'From the template, in the VBA editor, set a reference to Microsoft Visual Basic for Applications Extensibility 5.3 in the menu Tools

Dim WorksheetName As String

Dim WorksheetCell As String

Dim Section As String

Dim kKey As String

Dim lLine As Long

Dim InvoiceNumber As Long

Dim InvoiceNumberCell As Object

Dim TemplateName As String

Dim IniFileName As String

Dim Dummy As Variant

 TemplateName = "John2.xlt"

 WorksheetName = "Invoice"

 WorksheetCell = "F7"

 Section = "Invoice"

 kKey = "Number"

 IniFileName = "C:\Windows\Temp\InvoiceNumber.txt"

 Set InvoiceNumberCell = Worksheets(WorksheetName).Range(WorksheetCell)

 If UCase(ActiveWorkbook.Name) = UCase(TemplateName) Then GoTo Finito

 Dummy = GetString(Section, kKey, IniFileName)

 If Left(Dummy, 1) = Chr$(0) Then

 InvoiceNumber = 1

 Else

 InvoiceNumber = CLng(Dummy) + 1

 End If

 WritePrivateProfileString Section, kKey, CStr(InvoiceNumber),

IniFileName

 InvoiceNumberCell.Value = InvoiceNumber

 With

ActiveWorkbook.VBProject.VBComponents(ActiveWorkbook.CodeName).CodeModule

 lLine = .ProcBodyLine("Workbook_Open", vbext_pk_Proc)

 .InsertLines lLine + 1, "Exit Sub"

 End With

Finito:

Set InvoiceNumberCell = Nothing

End Sub

Function GetString(Section As String, Key As String, File As String) As String

 Dim KeyValue As String

 Dim Characters As Long

 KeyValue = String(255, 0)

 Characters = GetPrivateProfileString(Section, Key, "", KeyValue, 255, File)

 If Characters > 1 Then KeyValue = Left(KeyValue, Characters)

 GetString = KeyValue

End Function

by Jim Rech

Is there a way to delete all name ranges in a selection at one time?

Be careful to not break references to other formulas when using this procedure.

Sub Dename()

 Dim Cell As Range

 ActiveSheet.TransitionFormEntry = True

 For Each Cell In Selection.SpecialCells(xlFormulas)

 Cell.Formula = Cell.Formula

 Next

 ActiveSheet.TransitionFormEntry = False

End Sub

DEVELOPER TIPS

by Chip Pearson

Notes on an interesting and useful debugging technique. Suppose you are developing some application, and you have some global variable such as:

Public NumberOfUnits As Long

In your app, the only reasonable value for this is, say, between 1 and 100. For debugging purposes, you can "trap" your errors, when you assign an invalid value to this, as follows.

In your standard code module (NOTE: This does NOT have to be in a class module!) do the following:

Dim p_NumberOfUnits As Long

Property Get NumberOfUnits() As Long

 NumberOfUnits = p_NumberOfUnits

End Property

Property Let NumberOfUnits(Value As Long)

 If (Value >=1) And (Value <=100) Then

 p_NumberOfUnits = Value

 Else

 Err.Raise 5

 End If

End Property

Then, in the rest of your code, you'd access the variable in the normal way:

Sub AAA()

NumberOfUnits = 10

NumberOfUnits = 123

Msgbox "Units: " & NumberOfUnits

End Sub

These standard access methods will indeed take you through the get/let/set property procedures. And yes, standard code modules (BAS files) do support Property Get/Let/Set procedures. You're code will blow up on the statement

NumberOfUnits = 123

(You must raise an error. The specific error is, of course, you choice.)

Then, just use the View Call Stack to see where you called this from. Of course, this adds some overhead, so in the production version of the code, you'd remove the Property Get/Let pair, and rename

Dim p_NumberOfUnits As Long

to

Dim NumberOfUnits As Long

Or, of course, you could do everything with conditional compilation. In the end, the really interesting thing is that you can use property get/let/set procedures in a standard code module, not just in a class module.

Issue No.20 OF EEE (PUBLISHED 09Jul2001)

Next issue scheduled for [UNKNOWN]

BY David Hager

dchager@compuserve.com

PAGE
98

